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a b s t r a c t

Letm(n, k) be themaximumnumber of prime implicants that any k-CNF on n variables can
have. We show that 3

n
3 ≤ m(n, 2) ≤ (1 + o(1))3

n
3 .
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A prime implicant of a Boolean function f is a maximal subcube contained in f −1(1). It is known that among Boolean
functions on n variables the maximum number of prime implicants is between Ω( 3n

n ) and O( 3n
√
n ) (see [2]). It is interesting

to give finer bounds for restricted classes of functions. This problem has indeed been studied for DNFs with a bounded
number of terms. It is known that a DNF with k terms has at most 2k

− 1 prime implicants (see e.g. [7]).
In this note we consider the same problem for the class of k-CNF functions. Understanding the structure of the set of sat-

isfying assignments of k-CNF formulas has been a crucial subject in computational complexity, in particular in developing
k-SAT algorithms and bounded depth circuit lower bounds. Notable examples are the characterization of satisfying assign-
ments of a 2-CNF which yields a polynomial time algorithm for 2-SAT (see e.g. [1]), and the Satisfiability Coding Lemma
of [6] which bounds the number of isolated satisfying assignments of k-CNFs (these are the assignments such that if we
flip the value of any single variable, the formula is not satisfied anymore). This was later improved in [5] to obtain the best
known k-SAT algorithm and depth-3 circuit lower bounds for an explicit function.

To describe our main results we need a few definitions which follow shortly.
A restriction on a set X of variables is a mapping ρ : X → {∗, 0, 1}. We call a variable free if it is assigned ∗, and we call

it fixed otherwise. We say that a restriction is partial if it leaves at least one variable free. For a function f over a set X of
variables and a restriction ρ, we define fρ to be the subfunction obtained after setting values to the fixed variables according
to ρ. An implicant of f is a restriction ρ such that fρ is the constant 1 function. We define a prime implicant of f to be an
implicant ρ of f such that unspecifying any fixed variable does not yield the constant 1 function. A partial prime implicant is
a prime implicant that leaves at least one variable free. To see that the concept of prime implicant generalizes that of iso-
lated satisfying assignments, note that any isolated solution is in fact a prime implicant. Furthermore if ρ is a partial prime
implicant, it is easy to see that if we remove all the variables in ρ−1(∗) from the formula, then ρ restricted to X \ ρ−1(∗) is
in fact an isolated solution of this derived formula.
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The following lemma due to Paturi, Pudlák and Zane gives a bound on the number of isolated solutions of a k-CNF.

Lemma 1 (The Satisfiability Coding Lemma [6]). Any k-CNF on n variables has at most 2(1− 1
k )n isolated satisfying assignments.

In an attempt to extend this result we define m(n, k) to be the maximum number of prime implicants over k-CNF
formulas on n variables. It is a natural question to give sharp bounds form(n, k). A similar problemwas studied byMiltersen,
Radhakrishnan andWegener [3] which asks for the smallest size of a DNF equivalent to a given k-CNF. We first give a lower
bound for m(n, k).

Proposition 1. There exists k0 such that for all n ≥ k ≥ k0, m(n, k) ≥ 3(1−O(
log k
k ))n.

Proof. We follow the construction of Chandra andMarkowsky [2].We divide the set of n variables in n/k parts, each of size k.
On each of these parts, we represent the Chandra–Markowsky function as a k-CNF, that is the disjunction of all conjunctions
of 2k/3 variables, exactly k/3 of which are negated. We can do this since each such function depends only on k variables.
Formula F would then be obtained by conjuncting all these functions together. In [2] it was shown that each block has at
least Ω(3k/k) prime implicants. It is easy to see that prime implicants of F are obtained by concatenating prime implicants
of the blocks. Therefore the total number of prime implicants is at least Ω((3k/k)n/k) = 3(1−O(log k/k))n. �

For k = 2 we manage to give almost tight bounds. Note that in this case the above bound is not applicable as it is only
valid as long as k is large.

Theorem 1. 3
n
3 ≤ m(n, 2) ≤ (1 + o(1))3

n
3 .

2. Proof of Theorem 1

We first prove the lower bound. Let n = 3m and consider the following formula on variable set {x1, . . . , xm, y1, . . . , ym,
z1, . . . , zm} suggested to us by Dominik Scheder:

T (x, y, z) =

m
i=1

(xi ∨ yi) ∧ (yi ∨ zi) ∧ (xi ∨ zi).

It is easy to see that every prime implicant of T and every 1 ≤ i ≤ mmust set exactly two variables among xi, yi and zi to 1.
Therefore T (x, y, z) has 3

n
3 prime implicants.

We now move on to the upper bound. Let F be any Boolean function on {x1, . . . , xn} and let ρ be a prime implicant that
fixes all the variables. We claim that ρ is an isolated satisfying assignment for F , that is if we change the value of any single
one of the variables, the formula evaluates to 0. To see this note that if changing the value of some variable xi still satisfies F ,
we can simply unspecify xi and get a smaller restriction which yields the constant 1 function, contradicting the minimality
of ρ. When F is a 2-CNF we can apply Lemma 1 and bound the number of such prime implicants by 2

n
2 .

It thus remains only to bound the number of partial prime implicants. Assume without loss of generality that F contains
no clauses with only one literal, since the value of such literal is forced. We need some terminology which we borrow
from [1]. We define the implication digraph of F which we denote by D(F) as follows. The vertex set consists of all literals
x1, x1, . . . , xn, xn. For every clause x ∨ y in F we put two directed edge x → y and y → x in D(F). We say that a literal u
implies a literal v, if there exists a directed path from u to v in D(F). From here on we will assume without loss of generality
that D(F) is loopless. This is because a loop in D(F) corresponds to a clause of the form u ∨ uwhich is always true. It is easy
to see that one can characterize the set of satisfying assignments of 2-CNFs in terms of their implication digraphs.

Proposition 2 ([1]). An assignment α satisfies a 2-CNF F if and only if there is no edge in D(F) going out of the set of true literals.

We now give a similar characterization of partial prime implicants. For a restriction ρ we partition the set of literals into
three sets Aρ , Bρ and Cρ containing false literals, true literals, and those that are free, respectively. For any set S of vertices
let N−(S) and N+(S) be the set of literals not in S implying some literal in S and the set of literals not in S implied by some
literal in S, respectively. We first make the following observation.

Proposition 3. Let F be a 2-CNF and let S be the set of all literals that appear in some directed cycle in D(F). Then for any
implicant ρ of F , we have S ∩ Cρ = ∅.

Proof. Fix any directed cycle T in D(F). In any satisfying assignment of F , all literals in T should be assigned the same value,
since otherwise there would be a path connecting a true literal to a false one. Similarly, in an implicant of F , if a literal in T is
free then in fact all literals in T must be free, since fixing the value of any such literal forces the value of all other literals in
T . But this means that those clauses that contain variables only in T are completely untouched by ρ and hence not satisfied.
This contradicts the assumption that ρ is an implicant. �

Proposition 4. Let F be a 2-CNF. A restriction ρ is an implicant of F if and only if
1. there is no edge into Aρ

2. there is no edge out of Bρ

3. Cρ is an independent set.
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