Note

On domination number and distance in graphs

Cong X. Kang
Texas AE'M University at Galveston, Galveston, TX 77553, USA

ARTICLE INFO

Article history:
Received 13 May 2014
Received in revised form 28 June 2015
Accepted 8 July 2015
Available online 29 July 2015

Keywords:

Domination number
Distance
Diameter
Spanning tree

Abstract

A vertex set S of a graph G is a dominating set if each vertex of G either belongs to S or is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is the minimum cardinality of S as S varies over all dominating sets of G. It is known that $\gamma(G) \geq \frac{1}{3}(\operatorname{diam}(G)+1)$, where $\operatorname{diam}(G)$ denotes the diameter of G. Define C_{r} as the largest constant such that $\gamma(G) \geq C_{r} \sum_{1 \leq i<j \leq r} d\left(x_{i}, x_{j}\right)$ for any r vertices of an arbitrary connected graph G; then $C_{2}=\frac{1}{3}$ in this view. The main result of this paper is that $C_{r}=\frac{1}{r(r-1)}$ for $r \geq 3$. It immediately follows that $\gamma(G) \geq \mu(G)=\frac{1}{n(n-1)} W(G)$, where $\mu(G)$ and $W(G)$ are respectively the average distance and the Wiener index of G of order n. As an application of our main result, we prove a conjecture of DeLaViña et al. that $\gamma(G) \geq \frac{1}{2}\left(\operatorname{ecc}_{G}(B)+1\right)$, where $\operatorname{ecc}_{G}(B)$ denotes the eccentricity of the boundary of an arbitrary connected graph G. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite, simple, undirected, and connected graphs $G=(V(G), E(G))$ of order $|V(G)| \geq 2$ and size $|E(G)|$. For $W \subseteq V(G)$, we denote by $\langle W\rangle_{G}$ the subgraph of G induced by W. For $v \in V(G)$, the open neighborhood of v is the set $N_{G}(v)=\{u \in V(G) \mid u v \in E(G)\}$, and the closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. Further, let $N(S)=\cup_{v \in S} N(v)$ and $N[S]=\cup_{v \in S} N[v]$ for $S \subseteq V(G)$. The degree of a vertex $v \in V(G)$ is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. The distance between two vertices $x, y \in V(G)$ in the subgraph H, denoted by $d_{H}(x, y)$, is the length of a shortest path between x and y in the subgraph H. The diameter $\operatorname{diam}(H)$ of a graph H is $\max \left\{d_{H}(x, y) \mid x, y \in V(H)\right\}$.

A set $S \subseteq V(G)$ is a dominating set (resp. total dominating set) of G if $N[S]=V(G)$ (resp. $N(S)=V(G))$. The domination number (resp. total domination number) of G, denoted by $\gamma(G)$ (resp. $\gamma_{t}(G)$), is the minimum cardinality of S as S varies over all dominating sets (resp. total dominating sets) in G; a dominating set (resp. total dominating set) of G of minimum cardinality is called a $\gamma(G)$-set (resp. $\gamma_{t}(G)$-set).

Both distance and (total) domination are very well-studied concepts in graph theory. For a survey of the myriad variations on the notion of domination in graphs, see [4].

It is well-known that $\gamma(G) \geq \frac{1}{3}(\operatorname{diam}(G)+1)(*)$; a "proof" to $(*)$ can be found on p .56 of the authoritative reference [4]. However, the "proof" contained therein is logically flawed. We provide a counter-example to a crucial assertion in the "proof", and then present a correct proof to $(*)$. Upon some reflection, we see that $(*)$ is the two parameter case of a family of inequalities existing between $\gamma(G)$ and the distances in G, in the following way: $\gamma(G) \geq \frac{1}{3}(\operatorname{diam}(G)+1)=$ $\frac{1}{3\binom{r}{2}}\left(\binom{r}{2} \operatorname{diam}(G)+\binom{r}{2}\right) \geq \frac{1}{3\binom{r}{2}}\left(\sum_{1 \leq i<j \leq r} d\left(x_{i}, x_{j}\right)\right)$. The inequality $\gamma(G) \geq \frac{1}{3\binom{r}{2}}\left(\sum_{1 \leq i<j \leq r} d\left(x_{i}, x_{j}\right)\right)$ naturally brings up the question: what is the largest constant C_{r}, such that $\gamma(G) \geq C_{r}\left(\sum_{1 \leq i<j \leq r} d\left(x_{i}, x_{j}\right)\right)$, for all connected graphs $G=(V, E)$ and arbitrary vertices $x_{1}, \ldots, x_{r} \in V$, where $r \geq 2$? Taking this viewpoint, we have $C_{2}=\frac{1}{3}$ by (*).

[^0]

Fig. 1. A counter-example.

The main result of this paper is that $C_{r}=\frac{1}{r(r-1)}$ for $r \geq 3$. Since, for a graph G of order $n, W(G)=\sum_{1 \leq i<j \leq n} d\left(x_{i}, x_{j}\right)$ is the Wiener index of G (see [6]) and $\mu(G)=\frac{1}{n(n-1)} W(G)$ is the average distance (per definition found in [1]), it follows that $\gamma(G) \geq \mu(G)=\frac{1}{n(n-1)} W(G)$. As an application of our main result, we prove a conjecture in [3] by DeLaViña et al. that $\gamma(G) \geq \frac{1}{2}\left(\operatorname{ecc}_{G}(B)+1\right)$, where $\operatorname{ecc}_{G}(B)$ denotes the eccentricity of the boundary of an arbitrary connected graph G (to be defined in Section 4).

This paper is motivated by the work of Henning and Yeo in [5], where they obtained similar inequalities for total domination number γ_{t} (rather than domination number γ). Given the close relation between the two graph parameters, we expect the techniques used in [5] to be readily adaptable towards the results of this paper. However, in striking contrast to [5], we avoid the painstaking case-by-case, structural analysis employed there by making use of the easy and well-known Lemma 3.1; this results in a much simpler and shorter paper. Further, we are able to obtain (in domination) the exact value of C_{r} for every r, rather than only a bound (in total domination, c.f. [5]) for C_{r} for all but the first few values of r.

2. An Error in the proof of $\gamma(G) \geq \frac{1}{3}(\operatorname{diam}(G)+1)$ in FoDiG

For readers' convenience, we first reproduce Theorem 2.24 and its incorrect proof as it appears on p. 56 of [4], the authoritative reference in the field of domination titled Fundamentals of Domination in Graphs.

Theorem 2.1. For any connected graph $G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq \gamma(G)$.
"Proof", (as found on p. 56 of [4]). Let S be a γ-set of a connected graph G. Consider an arbitrary path of length diam(G). This diametral path includes at most two edges from the induced subgraph $\langle N[v]\rangle$ for each $v \in S$. Furthermore, since S is a γ-set, the diametral path includes at most $\gamma(G)-1$ edges joining the neighborhoods of the vertices of S. Hence, $\operatorname{diam}(G) \leq 2 \gamma(G)+\gamma(G)-1=3 \gamma(G)-1$ and the desired result follows.

Presumably, by a "diametral path", the authors had in mind an induced path with length $\operatorname{diam}(G)$. Still, the assertion of the sentence beginning with "Furthermore" is incorrect, as seen by the example in Fig. 1: notice that $S=\{u, v\}$ is a γ-set and the vertices $1,2,3$, 4 form a diametral path containing 3 edges joining $\langle N[u]\rangle$ with $\langle N[v]\rangle$, whereas $\gamma(G)-1=1$.

3. Domination number and distance in graphs

The following lemma can be proved by exactly the same argument given in the proof of Lemma 2 in [2]; it was also observed on p. 23 of [1].

Lemma 3.1 ([1,2]). Let M be a $\gamma(G)$-set. Then there is a spanning tree T of G such that M is a $\gamma(T)$-set.
Now, we apply Lemma 3.1 to give a correct proof of Theorem 2.1.
Proof of Theorem 2.1. Given G, take a spanning tree T of G such that $\gamma(G)=\gamma(T)$. Suppose, for the sake of contradiction, $\gamma(G)<\frac{1}{3}(\operatorname{diam}(G)+1)$. Since $\gamma(T)=\gamma(G)$ and $\operatorname{diam}(T) \geq \operatorname{diam}(G)$, we have

$$
\begin{equation*}
\gamma(T)<\frac{1}{3}(\operatorname{diam}(T)+1) \tag{1}
\end{equation*}
$$

Take a path P of T with length equal to $\operatorname{diam(T)}$. If (1) holds, there must exist a vertex u of T such that $|V(P) \cap N[u]| \geq 4$. Since P is a path of T (a tree), this is impossible.

Theorem 3.2. Given any three vertices x_{1}, x_{2}, x_{3} of a connected graph G, we have

$$
\begin{equation*}
\gamma(G) \geq \frac{1}{6}\left(d_{G}\left(x_{1}, x_{2}\right)+d_{G}\left(x_{1}, x_{3}\right)+d_{G}\left(x_{2}, x_{3}\right)\right) . \tag{2}
\end{equation*}
$$

Further, if equality is attained in (2), then $d_{G}(u, v) \equiv 2(\bmod 3)$ for any pair $u, v \in\left\{x_{1}, x_{2}, x_{3}\right\}$.

https://daneshyari.com/en/article/417995

Download Persian Version:

https://daneshyari.com/article/417995

Daneshyari.com

[^0]: E-mail address: kangc@tamug.edu.
 http://dx.doi.org/10.1016/j.dam.2015.07.009
 0166-218X/© 2015 Elsevier B.V. All rights reserved.

