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a b s t r a c t

The Π graph sandwich problem asks, for a pair of graphs G1 = (V , E1) and G2 = (V , E2)
with E1 ⊆ E2, whether there exists a graph G = (V , E) that satisfies property Π and
E1 ⊆ E ⊆ E2. We consider the property of being F-free, where F is a fixed graph. We show
that the claw-free graph sandwich and the bull-free graph sandwich problems are both
NP-complete, but the paw-free graph sandwich problem is polynomial. This completes
the study of all cases where F has at most four vertices. A skew partition of a graph G
is a partition of its vertex set into four nonempty parts A, B, C,D such that each vertex
of A is adjacent to each vertex of B, and each vertex of C is nonadjacent to each vertex
of D. We prove that the skew partition sandwich problem is NP-complete, establishing a
computational complexity non-monotonicity.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite and undirected. Given a graph property Π , the Π graph sandwich problem is
defined as follows:

Input: A pair (G1,G2) of graphs with G1 = (V , E1),G2 = (V , E2) and E1 ⊆ E2;
Question: Is there a graph G = (V , E) that satisfies property Π and inclusion E1 ⊆ E ⊆ E2?

The graph sandwich problem was introduced by Golumbic and Shamir in [16] and further studied in [13,17]. Clearly,
when G1 = G2 the problem is to decide whether G1 satisfies property Π . So the graph sandwich problem generalizes
the recognition problem of deciding whether a graph satisfies a given property. In particular, if the recognition problem is
NP-complete, then the sandwich problem is also NP-complete. When the property Π is to belong to a class C of graphs,
we may also speak of the C graph sandwich problem. Golumbic, Kaplan and Shamir [14,15] proved that the interval graph,
unit interval graph, permutation graph and comparability graph sandwich problems are all NP-complete, while the split
graph, threshold graph and cograph sandwich problems are in P. Graph sandwich problems have attracted much attention
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Fig. 1. Claw, paw and bull.

because of many applications and as a natural generalization of recognition problems. See e.g. [1,7,6,8,10,18,19,25] where
many results on sandwich problems for graph properties and classes were obtained.

We say that a graph G contains a graph F if some induced subgraph of G is isomorphic to F . A graph G is F-free if it does
not contain F . Dantas, de Figueiredo, da Silva and Teixeira [6] initiated a study of the F-free graph sandwich problem, and
determined the complexity status (in P or NP-complete) of the problem for several graphs F , including the cases when F is
the diamond (K4 \ e) and when F is the 4-hole C4. Here, we develop this study by determining the complexity status for the
cases where F has four vertices that were not solved in [6]. We also consider some graphs on five vertices or more.

A long-standing open problem posed in the seminal paper by Golumbic, Kaplan and Shamir [15] is the complexity of
the perfect graph sandwich problem. The celebrated proof of the Strong Perfect Graph Theorem by Chudnovsky et al. [3]
established the characterization of perfect graphs by forbidden induced subgraphs; in that proof, the concept of skew
partition plays a key role. A skew partition of a graph G = (V , E) is a partition of its vertex set V into four nonempty parts
A, B, C,D such that each vertex of part A is adjacent to each vertex of part B, and each vertex of part C is nonadjacent to each
vertex of partD. Note that if (A, B, C,D) is a skewpartition ofG then (C,D, A, B) is a skewpartition ofG and vice versa. It is this
self-complementarity which first suggested that these partitions might be important to an understanding of the structure
of perfect graphs. Chvátal [4] introduced the concept of skew partition. He conjectured that no minimal imperfect graph
admits a skew partition and speculated that skew partitions might play a key role in a decomposition theoremwhich would
imply the Strong Perfect Graph Conjecture. Chvátal [4] defined a star cutset as any cutset that contains a vertex adjacent
to every other vertex of the cutset. If G contains a skew partition (A, B, C,D), then A ∪ B is a skew cutset of G separating
G[C] from G[D]. If A is a clique of G, then G has a star cutset. If both A and B are cliques of G, then G has a clique cutset.
Chvátal [4] proved that no minimal imperfect graph has a star cutset and conjectured that no minimal imperfect graph has
a skew cutset. Polynomial-time algorithms for the recognition of clique cutset [28], star cutset [4], and skew cutset [9] were
established. Recent work has further studied the computational complexity of skew cutsets [20,22,27].

Regarding the corresponding sandwich problems clique cutset sandwich problem is NP-complete, but star cutset
sandwich problem is polynomial [26]. We prove that the further generalization skew partition sandwich problem is NP-
complete establishing an interesting computational complexity non-monotonicity. Note that homogeneous set and clique
cutset are vertex partitions into three nonempty parts. The dichotomy polynomial time versus NP-completewas completely
determined for the class of three nonempty part sandwich problems [24].

Let us recall some basic definitions and notation. For any integer k ≥ 4, a k-hole is a chordless cycle of length k and is
denoted by Ck. For any integer k ≥ 1, we let Kk and Pk respectively denote the complete graph and the path on k vertices.
Let Kp \ e denote the complete graph on p vertices minus one edge. For any graph G and subset X of vertices of G, we let G[X]

denote the subgraph of G induced by X . The complementary graph of G is denoted by G. Given two vertex-disjoint graphs
F1 and F2, their union is the graph F1 + F2 with vertex-set V (F1) ∪ V (F2) and edge-set E(F1) ∪ E(F2). The union of k copies of
one graph G is denoted by kG.

For an instance (G1,G2) of the sandwich problemwith G1 = (V , E1),G2 = (V , E2) and E1 ⊆ E2, we say that any member
of E1 is a forced edge, any member of Eopt = E2 \ E1 is an optional edge, and any pair in V × V \ E2 is a forbidden pair. Every
graph G = (V , E) with E1 ⊆ E ⊆ E2 is called a sandwich graph for the pair (G1,G2). In that case, E consists of all forced
edges plus some (possibly zero) optional edges, and E contains no edge corresponding to a forbidden pair.

We recall some results from [6,15].

• Complementary graphs [15]. For any fixed graph F , if G is an F-free sandwich graph for the pair (G1,G2), then G is an F-free
sandwich graph for the pair (G2,G1). It follows that the F-free graph sandwich problem and the F-free graph sandwich
problem have the same complexity.

• Complete graphs. If F is the complete graph Kp, then an instance (G1,G2) of the F-free graph sandwich problem has a
solution if and only if G1 is Kp-free. This can be tested in polynomial time as p is a constant.

• Complete graph minus an edge [6]. For every fixed p, the (Kp \ e)-free sandwich problem is in P.
• Holes [6]. For every fixed k ≥ 4, the k-hole-free sandwich problem is NP-complete.
• P4-free graphs (cographs) [15]. The P4-free graph sandwich problem is in P.

Let F be any graph on four vertices. Up to isomorphism there are eleven such graphs. If F is either K4 (or its complement)
or K4 \ e (or its complement) or P4 (which is self-complementary), then the F-free graph sandwich problem is in P by the
preceding results. If F is C4 (or its complement 2K2), then the problem is NP-complete as mentioned earlier. The remaining
two cases are when F is the claw (or its complement) and the paw (or its complement), where the claw is the graph
with vertex-set {a, b, c, d} and edge-set {ab, ac, ad} and the paw is the graph with vertex-set {a, b, c, d} and edge-set
{ab, ac, ad, bc}. See Fig. 1. These two cases are solved now as follows.
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