Badly-covered graphs

Márcia R. Cappelle ${ }^{\text {a }}$, Felix Joos ${ }^{\text {b }}$, Janina Müttel ${ }^{\text {b }}$, Dieter Rautenbach ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil
${ }^{\mathrm{b}}$ Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany

A R TICLE INFO

Article history:

Received 6 January 2013
Received in revised form 28 August 2013
Accepted 9 November 2013
Available online 26 November 2013

Keywords:

Well-covered graph
Maximal independent set
Clique

Abstract

We show that the maximum number of different sizes of maximal complete k-partite induced subgraphs of a graph G of sufficiently large order n is at least $(n-k+1)-\log _{2}(n-$ $k+1)-4$ and at most $n-\left\lfloor\log _{2}\left(\frac{n}{k!}\right)\right\rfloor$. We analyze some features of the structure of graphs with the maximum possible number of different sizes of maximal independent sets, and give best-possible estimates for $K_{1, k}$-free graphs and regular graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In [3], Plummer defined a graph to be well-covered if all its maximal independent sets have the same size. At the 5th Latin American Workshop on Cliques in Graphs, Szwarcfiter [5] proposed studying graphs that are as far from being well-covered as possible; more precisely, he asked about the maximum possible number of sizes of maximal independent sets in a graph of order n. Apparently, Moon and Moser [2] were the first to contribute to this problem. Before we summarize some known results and explain our contribution, we introduce some terminology.

For a positive integer k, let $[k]$ denote the set $\{1,2, \ldots, k\}$. For a finite, simple, and undirected graph G and a positive integer k, let $\operatorname{MMIS}(G, k)$ denote the set of all maximal complete k-partite induced subgraphs of G. That is, for every graph H in $\operatorname{MMIS}(G, k)$, the vertex set $V(H)$ of H can be partitioned into k possibly empty sets V_{1}, \ldots, V_{k} such that

- V_{i} is an independent set of G for $i \in[k]$,
- G contains all edges between V_{i} and V_{j} for distinct $i, j \in[k]$, and
- H is not a proper subgraph of another complete k-partite induced subgraph of G.

Note that the elements of $\operatorname{MMIS}(G, 1)$ correspond to the maximal independent sets of G, which in turn correspond to the cliques of the complement \bar{G} of G. Let mmiss (G, k) denote the number of different orders of the graphs in MMIS (G, k); that is, the problem proposed by Szwarcfiter and already studied by Moon and Moser concerns the maximum possible value of mmiss $(G, 1) .{ }^{1}$

In 1965, Moon and Moser [2] proved that

$$
\begin{equation*}
\operatorname{mmiss}(G, 1) \leq n-\left\lfloor\log _{2} n\right\rfloor \tag{1}
\end{equation*}
$$

[^0]for every graph G of order n. Furthermore, for every n, they constructed graphs G of order n with
$$
\operatorname{mmiss}(G, 1) \geq n-\left\lfloor\log _{2} n\right\rfloor-2\left\lfloor\log _{2} \log _{2} n\right\rfloor-4
$$

In 1966, Erdős [1] improved the lower bound by replacing the $\log _{2} \log _{2} n$ term with an iterated logarithm, and, in 1971, Spencer [4] constructed for every positive integer n at least 33000 , graphs G of order n with

$$
\begin{equation*}
\operatorname{mmiss}(G, 1) \geq n-\log _{2} n-4 . \tag{2}
\end{equation*}
$$

Even though in view of (1) and (2) the maximum value of mmiss ($G, 1$) for graphs G of order n is known up to a small constant, the extremal graphs are not known exactly. Nevertheless, the constructions in [2,1,4] share certain recurrent features.

Our first contribution is the generalization of (1) to $\operatorname{mmiss}(G, k)$ for general k. Our result and a simple modification of Spencer's construction imply that the maximum values of $\operatorname{mmiss}(G, k)$ and mmiss $(G, 1)$ for graphs of order n only differ by a constant for fixed k. Therefore, we reconsider $\operatorname{mmiss}(G, 1)$ and show that the recurrent features of the (almost-)extremal constructions have a reason. Finally, we give best-possible estimates for mmiss $(G, 1)$ for $K_{1, k}$-free graphs and regular graphs.

2. Results

We begin with a simple bound for general graphs, which generalizes (1).
Theorem 1. If G is a graph of order n and k is a positive integer, then

$$
\begin{equation*}
\operatorname{mmiss}(G, k) \leq n-\left\lfloor\log _{2}\left(\frac{n}{k!}\right)\right\rfloor \tag{3}
\end{equation*}
$$

Proof. Let H_{0} be a complete k-partite induced subgraph of G of maximum order $n\left(H_{0}\right)$. If $n\left(H_{0}\right)$ is at most the right-hand side of (3), then (3) follows immediately. Hence, we may assume that the set $R=V(G) \backslash V\left(H_{0}\right)$ has order at $\operatorname{most}^{\log } \log _{2}\left(\frac{n}{k!}\right)-1$. Let $\left(V_{1}, \ldots, V_{k}\right)$ be an ordered partition of $V\left(H_{0}\right)$ into possibly empty independent sets that are pairwise completely joined in G.

Let S be a subset of R. Note that there are $2^{|R|}$ such subsets. We claim that there are at most k ! distinct graphs H in $\operatorname{MMIS}(G, k)$ with $S=V(H) \cap R$. In fact, if $G[S]$ is not a complete k-partite graph, then there is no such graph. Hence we may assume that $G[S]$ is a complete k-partite graph. Let $\mathcal{P}=\left(S_{1}, \ldots, S_{k}\right)$ be an ordered partition of S into possibly empty independent sets that are pairwise completely joined in G. Note that there are at most k ! such ordered partitions. If, for $i \in[k]$,

$$
V_{i}^{\prime}=\left\{u \in V_{i}: N_{G}(u) \cap S_{i}=\emptyset \text { and } S_{j} \subseteq N_{G}(u) \text { for every } j \in[k] \backslash\{i\}\right\}
$$

then $H(\mathscr{P})=G\left[\bigcup_{i=1}^{k} S_{i} \cup V_{i}^{\prime}\right]$ is the unique maximal complete k-partite induced subgraph of G that arises from $G[S]$ by adding, for every $i \in[k]$, vertices from V_{i} to S_{i}.

Now, let H be a graph in $\operatorname{MMIS}(G, k)$ with $S=V(H) \cap R$. Let $\left(U_{1}, \ldots, U_{k}\right)$ be an ordered partition of $V(H)$ into possibly empty independent sets that are pairwise completely joined in G. Since H and H_{0} are complete k-partite, every set U_{i} intersects at most one of the sets V_{j}, and every set V_{j} intersects at most one of the sets U_{i}. This implies that we may assume that $U_{i} \cap V_{j}=\emptyset$ for $i, j \in[k]$ with $i \neq j$; that is, we assume that the partition $\left(U_{1}, \ldots, U_{k}\right)$ is ordered in such a way that the set U_{i} intersects at most the set V_{i} for $i \in[k]$. Let $T_{i}=U_{i} \cap R$ for $i \in[k]$. Note that $\left(T_{1}, \ldots, T_{k}\right)$ is an ordered partition of S into possibly empty independent sets that are pairwise completely joined in G. In view of the above remark about the uniqueness of $H(\mathscr{P})$, it follows that $H=H\left(\left(T_{1}, \ldots, T_{k}\right)\right)$; that is, each graph in $\operatorname{MMIS}(G, k)$ equals $H(\mathscr{P})$ for some ordered partition \mathcal{P} of S.

Since $|R| \leq \log _{2}\left(\frac{n}{k!}\right)-1$, this implies that mmiss $(G, k) \leq k!2^{|R|} \leq \frac{n}{2} \leq n-\left\lfloor\log _{2}\left(\frac{n}{k!}\right)\right\rfloor$, which completes the proof.
Adding to the graphs constructed by Spencer [4] an independent set of $k-1$ vertices joined to all remaining vertices yields graphs G of order $n \geq 33000+(k-1)$ with $\operatorname{mmiss}(G, k) \geq(n-k+1)-\log _{2}(n-k+1)-4$; that is, for constant k and sufficiently large order, the bound in Theorem 1 is best possible up to a constant additive term.

We now reconsider the extremal graphs for $\operatorname{mmiss}(G, 1)$. For $k=1$, the graph H_{0} considered in the proof of Theorem 1 is a maximum independent set. In order to receive essentially $n-\left\lfloor\log _{2} n\right\rfloor$ maximal independent sets of different sizes, the independence number $\alpha(G)$ of G should be essentially equal to $n-\left\lfloor\log _{2} n\right\rfloor$; that is, the complement R should have order essentially equal to $\left\lfloor\log _{2} n\right\rfloor$. Furthermore, for essentially every subset S of R, the graph G should contain a maximal independent set $I(S)$ with $I(S) \cap R=S$, and essentially all these sets should be of different size. As we show in Theorem 3 below, this extreme situation naturally leads to the disjoint union of exponentially growing stars, which is a common constructive feature in all (almost-)extremal constructions [2,1,4].

Before we come to this result, we need a small number-theoretic lemma. We have the feeling that this lemma should be well known, but since we did not find a reference, we include the simple proof.

Lemma 2. If, for $k \in \mathbb{N}, D$ is a set of k positive integers such that every integer between 0 and $2^{k}-1$ has a representation as a sum of elements of D, then $D=\left\{2^{0}, 2^{1}, \ldots, 2^{k-1}\right\}$.
Proof. We prove the statement by induction on k. For $k=1$, the result is trivial. Now, let $k \geq 2$. Let $D=\left\{d_{1}, \ldots, d_{k}\right\}$ be such that $d_{1} \leq d_{2} \leq \cdots \leq d_{k}$. Since D has 2^{k} subsets and there are exactly 2^{k} integers between 0 and $2^{k}-1$, every such integer has a unique representation as a sum of elements of D, and all sums of the elements of distinct subsets of D are distinct.

If $d_{k}>2^{k-1}$, then every integer between 0 and 2^{k-1} has a representation as a sum of elements of $D \backslash\left\{d_{k}\right\}$. Since there are $2^{k-1}+1$ such integers but $D \backslash\left\{d_{k}\right\}$ only has 2^{k-1} subsets, this is impossible.

https://daneshyari.com/en/article/418193

Download Persian Version:
https://daneshyari.com/article/418193

Daneshyari.com

[^0]: * Corresponding author. Tel.: +49 7315023630; fax: +49731501223630.

 E-mail addresses: marcia@inf.ufg.br (M.R. Cappelle), felix.joos@uni-ulm.de (F. Joos), janina.muettel@uni-ulm.de (J. Müttel), dieter.rautenbach@uni-ulm.de, dieter.rautenbach@googlemail.com (D. Rautenbach).
 1 "MMIS" stands for "maximal multipartite induced subgraphs" and "mmiss" stands for "maximal multipartite induced subgraph sizes".

