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a b s t r a c t

The main results of the paper are concerned with determining the optimal stationary
strategies for stochastic discrete control problems on networks with discounted costs. We
ground polynomial time algorithms for determining the optimal strategies of this problem
using a linear programming approach. Additionally, we show that the proposed approach
can be extended for Markov decision processes with a total discounted cost optimization
criterion.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and problem formulation

The stochastic discrete control problems and Markov decision processes with discounted costs have been studied in
[5,6,10,12]. Investigations concerned with the elaboration of numerical algorithms for solving these problems arise in many
practical decision problems from diverse areas such as ecology, economics, engineering, communications systems etc.
(see [1,2,6,10,11]). Efficient iterative procedures for determining the optimal stationary strategies for infinite horizon control
problems and aMarkov decision problemwith discounted costs are described in [5–13]. In this paperwe consider the infinite
horizon stochastic control problem on networks with discounted costs and develop a linear programming approach for
determining its optimal solutions. Afterwards we extend the linear programming approach for a Markov decision problem.
The formulation of the infinite horizon control problem on networks is the following.

Let a time-discrete system L with a finite set of states X be given. At every discrete moment of time t = 0, 1, 2, . . .
the state of the dynamical system is given by x(t) ∈ X . The dynamics of the system is described by a directed graph of
states’ transitions G = (X, E), where the vertex set X corresponds to the set of states of L, and an arbitrary directed edge
e = (x, y) ∈ E expresses the possibility of the dynamical system to pass from the state x = x(t) to the state y = x(t) at
every discrete moment of time t = 0, 1, 2, . . .. On the edge set E a cost function c : E → R is defined that gives a cost ce to
each directed edge e = (x, y) ∈ E when the system makes a transition from the state x = x(t) to the state y = x(t + 1) for
every t = 0, 1, 2, . . .. We define a stationary control for the system L in G as a map

s : x → y ∈ X(x) for x ∈ X,

where X(x) = {y ∈ X | (x, y) ∈ E}.
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Let s be an arbitrary stationary control. Then the set of edges of the form (x, s(x)) in G generates a subgraph Gs = (X, Es)
where each vertex x ∈ X contains one leaving directed edge. So, if the starting state x0 = x(0) is fixed then the system
makes transitions from one state to another through the corresponding directed edges es0, es1, es2, . . . , est , . . . , where
est = (x(t), x(t + 1)), t = 0, 1, 2, . . .. This sequence of directed edges generates a trajectory x0 = x(0), x(1), x(2), . . .
which leads to a unique directed cycle. For an arbitrary stationary strategy s and a fixed starting state x0 the discounted
expected total cost σ

γ
x0(s) is defined as follows

σ γ
x0(s) =

∞
t=0

γ tcest ,

where γ , 0 < γ < 1, is a given discount factor.
Based on the results from [2,10,12] it is easy to show that for an arbitrary stationary strategy s there exists σ

γ
x0(s). If we

denote by σ γ (s) the column vector with components σ
γ
x (s) for x ∈ X then σ

γ
x0(s) can be found by solving the system of

linear equations

(I − γ P s)σ γ (s) = cs, (1)

where cs is the vector with corresponding components cx,s(x) for x ∈ X, I is the identity matrix and P s the matrix with
elements psx,y for x, y ∈ X defined as follows:

psx,y =


1, if y = s(x);
0, if y ≠ s(x).

It is well known that for 0 < γ < 1 the rank of the matrix I − γ P s is equal to |X | and system (1) has solutions for arbitrary
cs (see [10,12]). Thus, we can determine σ

γ
x0(s

∗) for an arbitrary starting state x0.
In the considered deterministic discounted control problem on G we are seeking for a stationary control s∗ such that

σ γ
x0(s

∗) = min
s

σ γ
x0(s).

We formulate and study this problem in a more general case considering its stochastic version. We assume that the
dynamical system may admit states in which the vector of control parameters is changed in a random way. So, the set
of states X is divided into two subsets X = XC ∪ XN , XC ∩ XN = ∅, where XC represents the set of states in which the
decision maker is able to control the dynamical system and XN represents the set of states in which the dynamical system
makes transition to the next state in a randomway. So, for every x ∈ X on the set of feasible transitions E(x) the distribution
function p : E(x) → R is defined such that


e∈E(x) pe = 1, pe ≥ 0, ∀e ∈ E(x) and the transitions from the states x ∈ XN to

the next states are made according to these distribution functions. Here, in a similar way as for the deterministic problem,
we assume that to each directed edge e = (x, y) ∈ E a cost ce of system’s transition from the state x = x(t) to the state
y = x(t + 1) for every t = 0, 1, 2, . . . is associated. In addition we assume that the discount factor γ , 0 < γ < 1, and the
starting state x0 are given. We define a stationary control on G as a map

s : x → y ∈ X(x) for x ∈ XC .

Let s be an arbitrary stationary strategy. We define the graph Gs = (X, Es ∪ EN), where Es = {e = (x, y) ∈ E | x ∈ XC , y =

s(x)}, EN = {e = (x, y) | x ∈ XN , y ∈ X}. This graph corresponds to aMarkov processwith the probabilitymatrix P s
= (psx,y),

where

psx,y =

px,y, if x ∈ XN and y = X;

1, if x ∈ XC and y = s(x);
0, if x ∈ XC and y ≠ s(x).

For this Markov process with associated costs ce, e ∈ E we can define the expected total discounted cost σ
γ
x0(s) as we have

introduced it in the first paragraph. We consider the problem of determining the strategy s∗ for which

σ γ
x0(s

∗) = min
s

σ γ
x0(s).

Without loss of generality we may consider that G poses the property that an arbitrary vertex in G is reachable from x0;
otherwise we can delete all vertices that could not be reached from x0.

2. A linear programming approach

Let s be an arbitrary stationary strategy. We identify this strategy with the set of boolean variables sx,y for x ∈ XC and
y ∈ X(x), where

sx,y =


1, if y = s(x);
0, if y ≠ s(x). (2)

In the following we will simplify the notations and instead of σ γ
x we shall use σx.
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