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a b s t r a c t

The standard linearization of a binary quadratic program yields an equivalent reformula-
tion as an integer linear program, but the resulting LP-bounds are very weak in general.
We concentrate on applications where the underlying linear problem is tractable and ex-
ploit the fact that, in this case, the optimization problem is still tractable in the presence of
a single quadratic term in the objective function. We propose to strengthen the standard
linearization by the use of cutting planes that are derived from jointly considering each
single quadratic term with the underlying combinatorial structure. We apply this idea to
the quadratic minimum spanning tree and spanning forest problems and present complete
polyhedral descriptions of the corresponding problems with one quadratic term, as well as
efficient separation algorithms for the resulting polytopes. Computationally, we observe
that the new inequalities significantly improve dual bounds with respect to the standard
linearization, particularly for sparse graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Optimization problemswith a quadratic objective function and linear constraints over binary variables are usually hard to
solve. This remains true in general in the special case where the underlying linear problem is polynomially solvable; even in
the unconstrained case the binary optimization problem is NP-hard due to its equivalence to theMaximum-Cut problem [5].

A very common approach to binary quadratic optimization is to linearize the quadratic terms and to develop an appro-
priate polyhedral description of the corresponding set of feasible solutions. For reasons of complexity, one cannot expect to
find a tight and polynomial sized polyhedral description. A straightforward idea is to linearize each product in the objective
function independently and simply combine the result with the given linear side constraints [7]. This approach yields a cor-
rect integer programming model of the problem, but the resulting LP-relaxations lead to very weak bounds in general, so
that branch-and-cut algorithms based on this simple linearization idea perform very poorly in practice. For this reason, one
usually searches for stronger inequalities to tighten the description; see, e.g., [3].

In this paper, we consider another approach that, to the best of our knowledge, has not been investigated yet:we examine
the problem version with only one product term in the objective function, but with all linear side constraints taken into
account [2]. Any valid cutting plane for this problemwill remain valid for the original problem and potentially improves over
the straightforward model, since the chosen product is considered together with all side constraints. The advantage of our
approach lies in the fact that there exists a polynomial time separation algorithm for the one-product problemwhenever the
underlying linear problem is tractable. This is guaranteed by a general result by Grötschel et al. [10], since the corresponding
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optimizationproblem is polynomially solvable: for this,we can solve the underlying linear problem four times,with different
fixings of the two variables appearing in the chosen product. The resulting cutting planes may not be facet defining for the
original problem, but they lead to a tighter polyhedral description in general.

From a practical point of view, the indirect separation approach by Grötschel et al. is too general and it does not pay off to
apply it inside a branch-and-cut approach; the computational effort for generating a single cutting plane is too high. There-
fore, we have a closer look at specific quadratic optimization problems in order to find valid inequalities and fast separation
routines for the quadratic case, which might be inspired by the corresponding techniques in the linear case.

In this paper, we investigate our approach for the quadratic minimum spanning tree (QMST) problem and the closely
related quadratic minimum spanning forest (QMSF) problem. The linear spanning forest problem deals with finding a cycle
free spanning subgraph of minimal cost in a given underlying graph, where costs are defined edge-wise. If additionally the
subgraph is required to be connected, we obtain the linear version of the spanning tree problem. The latter problem is well
studied and solvable in polynomial time, e.g., by the algorithms of Prim [17] or Kruskal [12]. If additional costs arise for
pairs of edges, we obtain the QMST problem, which was shown to be NP-hard in general by Assad and Xu [1]. In their work
the authors also give examples for the QMST problem arising in applications related to transportation problems or commu-
nication and energy networks. Here, additional costs occur whenever two adjacent edges of different types are chosen to
belong to the tree. Examples are trees with changeover and reload costs, recently studied by Galbiati et al. [8,9]. Exact and
heuristic algorithms for QMST have been presented by Cordone and Passeri [4], Öncan and Punnen [15], and very recently by
Pereira et al. [16], who apply the reformulation–linearization technique (RLT) combined with Lagrangian relaxation. More
heuristic approaches are discussed in [22,21,14]. Special cases of QMST have been shown to be tractable, e.g., the case of a
multiplicative objective function with positive factors [18].

In contrast to the QMST, the quadratic minimum forest problem has received little attention in the literature so far. Lee
and Leung [13] define the polytope corresponding to the linearized QMSF as the Boolean Quadric Forest Polytope and classify
several facet classes. For some of these classes, they develop polynomial time separation algorithms. Note that many vari-
ants of the linear spanning forest problem have been considered in the literature, e.g., the number of connected components
or the degree of vertices may be bounded. In this paper, we do not consider any such restriction but optimize over the set
of all spanning forests in the given graph.

Following our general approach outlined above, we devise complete polyhedral descriptions of the spanning forest prob-
lem and the spanning tree problem with one quadratic term. It turns out that, beyond the well-known subtour elimination
constraints for the linear case and the standard linearization constraints, only one additional exponential-size class of facet-
defining inequalities is needed for the complete description. The shape of these constraints depends on whether the two
edges involved in the quadratic term share a vertex or not; in both cases they are closely related to the subtour elimina-
tion constraints. In particular, we present exact and efficient separation algorithms based on the separation algorithm for
subtour elimination constraints.

Turning back to the general QMSF and QMST problems, this separation algorithm can be applied to each quadratic term
independently. We evaluate the strength of the resulting relaxation by computational experiments, integrating the new
separation algorithm into a branch-and-bound scheme. Our experiments show that the new cutting planes significantly
improve over the standard linearization in terms of dual bounds, particularly for sparse graphs.

Based on our approach, Fischer and Fischer [6] recently published an alternative proof for one of our results that devises
a complete polyhedral description of the spanning tree problemwith one quadratic term. For showing optimality of a given
treewith respect to this linear description, both proofs construct a corresponding dual solution.While we construct the dual
solution directly, distinguishing the four possible assignments of the two product variables, Fischer and Fischer start from a
dual optimal solution obtained by ignoring the quadratic term and adapt this solution appropriately. However, they do not
discuss separation algorithms and, in particular, they do not evaluate the approach experimentally.

This paper is organized as follows. In Section 2, we introduce the basic notation needed throughout the paper. Sections 3
and 4 present our polyhedral results for QMSF and QMST with one quadratic term. The corresponding separation problem
is addressed in Section 5, whereas Section 6 contains the results of an experimental evaluation. Section 7 concludes.

2. Preliminaries

Throughout this paper, we assume that G = (V , E) is a complete undirected graph. A spanning forest F is a cycle free
subgraph of Gwith V (F) = V . In a weighted graph, the cost of a spanning forest is the sum of edge weights ce over all edges
e ∈ E(F). If additional costs qef arise for each pair of different edges e, f ∈ E contained in the forest, we have a quadratic
minimum spanning forest problem (QMSF). In a very natural way, QMSF can be formulated as an integer program with linear
constraints and a quadratic objective function:

(QIPQMSF) min

e∈E

cexe +


e,f∈E
e≠f

qef xexf

s.t.


e∈E(G[S])

xe ≤ |S| − 1 ∀ ∅ ≠ S ⊆ V (1)

xe ∈ {0, 1} ∀ e ∈ E.
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