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a b s t r a c t

We show that every C6-free graph G has a C4-free, bipartite subgraph with at least 3e(G)/8
edges. Our proof is probabilistic and uses a theorem of Füredi et al. (2006) on C6-free
graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For a graph G, let e(G) denote the number of edges in G. We say G is H-free if it does not contain H as a subgraph. For a
family of graphs F , let ex(n, F ) denote the maximum number of edges an n-vertex graph G can have such that G is F-free
for all F ∈ F .

Győri [2] proved that every bipartite,C6-free graph contains aC4-free subgraphwith at least half asmany edges. Extending
this result, Kühn and Osthus [3] showed that every bipartite, C2k-free graph has a C4-free subgraph with at least 1/(k − 1)
of the original edges. In an extensive study of the Turán number ex(n, C6), Füredi, Naor and Verstraëte [1] gave another
generalization of Győri’s result by showing (Theorem 3.1) that a C6-free graph has a triangle-free, C4-free subgraph with at
least half as many edges.

Using any of these results combined with the well-known fact that every graph has a bipartite subgraph with at least
half as many edges, it is easy to show that any C6-free graph has a bipartite, C4-free subgraph with at least 1/4 the original
edges. Improving the constant 1/4 is the main focus of this paper.

In general, if we would like to make a C6-free graph C4-free and bipartite, we cannot hope to keep more than 2/5 of its
edges (considermany disjoint K5’s).We show that if c is themaximum constant such that every C6-free graph G has a C4-free
subgraph on c · e(G) edges then 3/8 ≤ c ≤ 2/5.

Theorem 1. Let G be a C6-free graph, then G contains a subgraph with at least 3e(G)/8 edges which is both C4-free and bipartite.

The result can also be phrased in the language of Turán theory: If C denotes the set of all odd cycles, then ex(n, C6) ≤

8 ex(n, C4, C6, C)/3.
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Our proof is a probabilistic deletion procedure consisting of several steps. First we two-color the vertices, and then,
focusing on specific edge-disjoint subgraphs, we delete certain edges given the outcome of the coloring. These edge-disjoint
subgraphs are themaximal subgraphs obtained by pasting together edge-intersecting C4’s andwere characterized by Füredi,
Naor and Verstraëte. We use the following slightly weaker formulation of their theorem.

Theorem 2. For a C6-free graph G, let G∗ denote the graph whose vertex set is the collection of C4’s in G and whose edge set
represents edge-intersection. Then each connected component of G∗ corresponds to an induced subgraph H of G of one of the
following types:
(0) the complete bipartite graph K2,m for some m > 0,
(1) a triangle xyz with α additional vertices adjacent to x and y but not z, and β more vertices adjacent to x and z but not y,
(2) a K4 with γ ≥ 0 additional paths of length 2 between a fixed pair of its vertices,
(3) a K5, K5 minus an edge, or a K5 minus two non-adjacent edges.

2. Proof of Theorem 1

Independently at random, color all vertices in G red or blue with probability 1/2 each. Deleting all monochromatic edges
would yield a bipartite graph, but some C4’s may remain. Thus, given the random coloring we will deterministically delete
additional edges in such a way that, upon deletion of monochromatic edges, at least 3e(G)/8 edges remain in expectation,
but all C4’s are deleted. Notice that after coloring, the C4’s which require further edge deletion are exactly the properly
colored C4’s (those with no monochromatic edges).

For each component H of type 0, 1, 2, or 3 from Theorem 2 we will show that our vertex-coloring and subsequent edge-
deletion procedure preserves at least 3e(H)/8 edges in expectation. Since these components are edge-disjoint and cover all
C4’s, we are then done by linearity of expectation.

Case(H is the null graph): G is C4-free so the result is immediate.
Case(H is of type 0): First, suppose H is a component of type 0. That is, H is a complete bipartite graph K2,t . Let x and y be

the vertices in the first class, and v1, v2, . . . , vt be the vertices in the second class. If x and y are opposite colors, then there
are no properly colored C4’s, and the expected number of remaining edges is exactly e(H)/2.

Now, suppose that x and y are the same color, say red. If none of the vi’s are colored blue then we lose all edges in H . If
exactly s, s ≥ 1, of the vi’s are colored blue, then we must delete all but one of the edges emanating from x to the vi’s for
otherwise we would have a properly colored C4. Thus, exactly s + 1 edges will remain in H . The probability that s of the vi
are blue is
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