Making a C_{6}-free graph C_{4}-free and bipartite
 Ervin Győri ${ }^{\text {a,b,* }}$, Scott Kensell ${ }^{\text {b }}$, Casey Tompkins ${ }^{\text {b }}$
 ${ }^{\text {a }}$ MTA Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary
 ${ }^{\text {b }}$ Department of Mathematics, Central European University, Budapest, Hungary

A R T I C L E I N F O

Article history:

Received 13 November 2014
Received in revised form 9 June 2015
Accepted 15 June 2015
Available online 13 July 2015

Keywords:

Graph theory
Extremal graphs
Bipartite subgraphs
6-cycles
4-cycles

Abstract

We show that every C_{6}-free graph G has a C_{4}-free, bipartite subgraph with at least $3 e(G) / 8$ edges. Our proof is probabilistic and uses a theorem of Füredi et al. (2006) on C_{6}-free graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For a graph G, let $e(G)$ denote the number of edges in G. We say G is H-free if it does not contain H as a subgraph. For a family of graphs \mathcal{F}, let $\operatorname{ex}(n, \mathcal{F})$ denote the maximum number of edges an n-vertex graph G can have such that G is F-free for all $F \in \mathcal{F}$.

Győri [2] proved that every bipartite, C_{6}-free graph contains a C_{4}-free subgraph with at least half as many edges. Extending this result, Kühn and Osthus [3] showed that every bipartite, $C_{2 k}$-free graph has a C_{4}-free subgraph with at least $1 /(k-1)$ of the original edges. In an extensive study of the Turán number ex (n, C_{6}), Füredi, Naor and Verstraëte [1] gave another generalization of Győri's result by showing (Theorem 3.1) that a C_{6}-free graph has a triangle-free, C_{4}-free subgraph with at least half as many edges.

Using any of these results combined with the well-known fact that every graph has a bipartite subgraph with at least half as many edges, it is easy to show that any C_{6}-free graph has a bipartite, C_{4}-free subgraph with at least $1 / 4$ the original edges. Improving the constant $1 / 4$ is the main focus of this paper.

In general, if we would like to make a C_{6}-free graph C_{4}-free and bipartite, we cannot hope to keep more than $2 / 5$ of its edges (consider many disjoint K_{5} 's). We show that if c is the maximum constant such that every C_{6}-free graph G has a C_{4}-free subgraph on $c \cdot e(G)$ edges then $3 / 8 \leq c \leq 2 / 5$.

Theorem 1. Let G be a C_{6}-free graph, then G contains a subgraph with at least $3 e(G) / 8$ edges which is both C_{4}-free and bipartite.
The result can also be phrased in the language of Turán theory: If \mathcal{C} denotes the set of all odd cycles, then ex $\left(n, C_{6}\right) \leq$ $8 \operatorname{ex}\left(n, C_{4}, C_{6}, \mathcal{C}\right) / 3$.

[^0]Our proof is a probabilistic deletion procedure consisting of several steps. First we two-color the vertices, and then, focusing on specific edge-disjoint subgraphs, we delete certain edges given the outcome of the coloring. These edge-disjoint subgraphs are the maximal subgraphs obtained by pasting together edge-intersecting C_{4} 's and were characterized by Füredi, Naor and Verstraëte. We use the following slightly weaker formulation of their theorem.

Theorem 2. For a C_{6}-free graph G, let G^{*} denote the graph whose vertex set is the collection of C_{4} 's in G and whose edge set represents edge-intersection. Then each connected component of G^{*} corresponds to an induced subgraph H of G of one of the following types:
(0) the complete bipartite graph $K_{2, m}$ for some $m>0$,
(1) a triangle $x y z$ with α additional vertices adjacent to x and y but not z, and β more vertices adjacent to x and z but not y,
(2) a K_{4} with $\gamma \geq 0$ additional paths of length 2 between a fixed pair of its vertices,
(3) a K_{5}, K_{5} minus an edge, or a K_{5} minus two non-adjacent edges.

Type 0

Type 2

Type 1

Type 3

2. Proof of Theorem 1

Independently at random, color all vertices in G red or blue with probability $1 / 2$ each. Deleting all monochromatic edges would yield a bipartite graph, but some C_{4} 's may remain. Thus, given the random coloring we will deterministically delete additional edges in such a way that, upon deletion of monochromatic edges, at least $3 e(G) / 8$ edges remain in expectation, but all C_{4} 's are deleted. Notice that after coloring, the C_{4} 's which require further edge deletion are exactly the properly colored C_{4} 's (those with no monochromatic edges).

For each component H of type $0,1,2$, or 3 from Theorem 2 we will show that our vertex-coloring and subsequent edgedeletion procedure preserves at least $3 e(H) / 8$ edges in expectation. Since these components are edge-disjoint and cover all C_{4} 's, we are then done by linearity of expectation.

Case(H is the null graph): G is C_{4}-free so the result is immediate.
Case(H is of type $\mathbf{0}$): First, suppose H is a component of type 0 . That is, H is a complete bipartite graph $K_{2, t}$. Let x and y be the vertices in the first class, and $v_{1}, v_{2}, \ldots, v_{t}$ be the vertices in the second class. If x and y are opposite colors, then there are no properly colored C_{4} 's, and the expected number of remaining edges is exactly $e(H) / 2$.

Now, suppose that x and y are the same color, say red. If none of the v_{i} 's are colored blue then we lose all edges in H. If exactly $s, s \geq 1$, of the v_{i} 's are colored blue, then we must delete all but one of the edges emanating from x to the v_{i} 's for otherwise we would have a properly colored C_{4}. Thus, exactly $s+1$ edges will remain in H. The probability that s of the v_{i} are blue is $\binom{t}{s} / 2^{t}$. Let N_{0} be the random variable equal to the number of edges which remain in H, then

$$
\begin{aligned}
\mathbb{E}\left(N_{0} \mid x \text { and } y \text { same color }\right) & =\frac{1}{2^{t}} 0+\sum_{s=1}^{t} \frac{\binom{t}{s}}{2^{t}}(s+1) \\
& =\frac{1}{2^{t}} \sum_{s=1}^{t}\binom{t}{s} s+\frac{1}{2^{t}} \sum_{s=1}^{t}\binom{t}{s} \\
& =\frac{1}{2^{t}} t 2^{t-1}+\frac{1}{2^{t}}\left(2^{t}-1\right) \\
& \geq \frac{t}{2}+\frac{1}{2} .
\end{aligned}
$$

https://daneshyari.com/en/article/418465

Download Persian Version:

https://daneshyari.com/article/418465

Daneshyari.com

[^0]: * Corresponding author at: MTA Rényi Institute, Hungarian Academy of Sciences, Budapest, Hungary. Tel.: +36 14838302 ; fax: +36 14838333 .

 E-mail addresses: gyori.ervin@renyi.mta.hu (E. Győri), skensell@gmail.com (S. Kensell), ctompkins496@gmail.com (C. Tompkins).

