Sufficient conditions for 2-rainbow connected graphs

Arnfried Kemnitz ${ }^{\text {a }}$, Ingo Schiermeyer ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Computational Mathematics, Technische Universität Braunschweig, 38023 Braunschweig, Germany
${ }^{\text {b }}$ Institut für Diskrete Mathematik und Algebra, Technische Universität Bergakademie Freiberg, 09596 Freiberg, Germany

A R T I C L E I N F O

Article history:

Received 27 September 2014
Received in revised form 12 October 2015
Accepted 15 October 2015
Available online 11 November 2015

Keywords:

Rainbow colouring
Rainbow connected

Abstract

An edge-coloured connected graph G is rainbow connected if each two vertices are connected by a path whose edges have distinct colours. If such a colouring uses k colours then G is called k-rainbow connected. The rainbow connection number of G, denoted by $\operatorname{rc}(G)$, is the minimum k such that G is k-rainbow connected. Even the problem to decide whether $\operatorname{rc}(G)=2$ is NP-complete. It has been shown that if G is a connected graph of order n and size m with $\binom{n-2}{2}+2 \leq m \leq\binom{ n-1}{2}$, then $2 \leq \operatorname{rc}(G) \leq 3$.

In this paper we will present sufficient conditions for graphs G of this size to fulfil $\operatorname{rc}(G)=2$ depending on vertex degrees.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We use [1] for terminology and notation not defined here and consider finite and simple graphs only.
An edge-coloured connected graph G is called rainbow connected if each two vertices are connected by a path whose edges have different colours. Note that the edge colouring need not be proper. If such a colouring uses k colours then G is called k-rainbow connected. The rainbow connection number of G, denoted by $\operatorname{rc}(G)$, is the minimum k such that G is k-rainbow connected.

This concept of rainbow connection in graphs was introduced by Chartrand et al. in [4]. An easy observation is that if G has n vertices then $\operatorname{rc}(G) \leq n-1$, since one may colour the edges of a given spanning tree of G with different colours and colour the remaining edges with one of the already used colours. Chartrand et al. [4] determined the precise rainbow connection number of several graph classes including complete multipartite graphs. The rainbow connection number has been studied for other graph classes in [2] and for graphs with fixed minimum degree in [2,8,11].

The computational complexity of rainbow connectivity has been studied in [3,9]. It is proved that the computation of $\operatorname{rc}(G)$ is NP-hard $[3,9]$. In fact, it is already NP-complete to decide whether $\operatorname{rc}(G)=2$. It is also NP-complete to decide whether a given edge-coloured (with an unbounded number of colours) graph is rainbow connected [3]. More generally, it has been shown in [9] that for any fixed $k \geq 2$ it is NP-complete to decide whether $\operatorname{rc}(G)=k$.

For the rainbow connection number of graphs the following results are known (and obvious).
Proposition 1. Let G be a connected graph of order n. Then

1. $1 \leq \operatorname{rc}(G) \leq n-1$,
2. $\operatorname{rc}(G) \geq \operatorname{diam}(G)$,
3. $\operatorname{rc}(G)=1$ if and only if G is complete,
4. $\operatorname{rc}(G)=n-1$ if and only if G is a tree.
[^0]Let $f(n, k)$ be the minimum integer such that every connected graph of order n and of size at least $f(n, k)$ is k-rainbow connected. In [7] the following problem was introduced:

Problem 1. Determine $f(n, k)$ for all n and k with $1 \leq k \leq n-1$.
The following result is stated and proved in [7], but we reproduce the proof here for the readers' convenience.
Proposition 2. For n and k with $1 \leq k \leq n-1$ it holds that $f(n, k) \geq\binom{ n-k+1}{2}+k-1$.
Proof. We construct a graph G_{k} as follows: Take a $K_{n-k+1}-e$ and denote the two vertices of degree $n-k-1$ with u_{1} and u_{2}. Now take a path P_{k} with vertices labelled $w_{1}, w_{2}, \ldots, w_{k}$ and identify the vertices u_{2} and w_{1}. The resulting graph G_{k} has order n and size $\left|E\left(G_{k}\right)\right|=\binom{n-k+1}{2}+k-2$. For its diameter we obtain $d\left(u_{1}, w_{k}\right)=\operatorname{diam}\left(G_{k}\right)=k+1$ which implies $\operatorname{rc}\left(G_{k}\right) \geq k+1$. Hence $f(n, k) \geq\binom{ n-k+1}{2}+k-1$.

This leads to our second problem.
Problem 2. Determine all values of n and k such that $f(n, k)=\binom{n-k+1}{2}+k-1$.
It has been shown that $f(n, k)=\binom{n-k+1}{2}+k-1$

- for $k=1,2, n-2$, and $n-1$ in [7],
- for $k=3$ and 4 in [10],
- and for $n-6 \leq k \leq n-3$ in [6].

Moreover, the following theorem was proved in [7].
Theorem 1 ([7]). Let G be a connected graph of order n and size m. If $\binom{n-1}{2}+1 \leq m \leq\binom{ n}{2}-1$, then $\operatorname{rc}(G)=2$.
From the above mentioned results we deduce that if G is a connected graph of order n and size m with $\binom{n-2}{2}+2 \leq m \leq$ $\binom{n-1}{2}$, then $2 \leq \operatorname{rc}(G) \leq 3$. In this paper we will present sufficient conditions for graphs G of size in this range fulfilling $\operatorname{rc}(G)=2$. The conditions depend on vertex degrees of the graph. Note that, as mentioned earlier, the problem to decide whether $\operatorname{rc}(G)=2$ is NP-complete.

2. Recursive approaches

In this section we will prove sufficient conditions for graphs to be 2-rainbow connected. The conditions are based on recursions. The following lemma will be used in proving the results.
Lemma 1. Let G be a connected graph of order n and $u \in V(G)$ be a vertex with $d(u) \geq \frac{n-1}{2}$. Let $H=G-u, T=V(G) \backslash N[u]$, and $t=|T|$. Suppose that $\operatorname{diam}(G)=2$ and there is a perfect t-matching $\left(t K_{2}\right)$ between all vertices of T and $N(u)$. Then it holds:

If H is 2 -rainbow connected, then G is 2 -rainbow connected.
Proof. Let $T=\left\{w_{1}, w_{2}, \ldots, w_{t}\right\}$ and $N(u)=\left\{v_{1}, v_{2}, \ldots, v_{d(u)}\right\}$. We may assume that $v_{i} w_{i} \in E(G)$ for $1 \leq i \leq t$. Consider now a 2-rainbow colouring c of the edges of H with colours 1 and 2 . Then we define $c\left(u v_{i}\right)=3-c\left(v_{i} w_{i}\right)$ for $1 \leq i \leq t$. Since H is 2-rainbow connected, we have to check that there is a 2-rainbow path between u and v for all vertices $v \in V(\bar{G}) \backslash\{u\}$. If $v \in N(u)$, then this is the case. If $v=w_{i}$ with $1 \leq i \leq t$, then $u v_{i} w_{i}$ is a 2-rainbow path. Hence, G is 2 -rainbow connected.
Theorem 2. Let G be a connected graph of order n and size m with $\operatorname{diam}(G)=2$ and $\binom{n-2}{2}+2 \leq m \leq\binom{ n-1}{2}$. If $m \geq\binom{ n-2}{2}+d(u)+1$ for a vertex u with $d(u) \geq \frac{n}{2}$, then $\operatorname{rc}(G)=2$.
Proof. Let $H=G-u, T=V(G) \backslash N[u]$, and $t=|T|$. Then $|E(H)| \geq\binom{ n-2}{2}+1$ and so $1 \leq \mathrm{rc}(H) \leq 2$ by Theorem 1 and Proposition 1.

We now show that there is a t-matching between the vertices of T and $N(u)$. Suppose there is no such t-matching. Then the marriage theorem of Hall [5] implies that there exists a subset $S \subseteq T$ with $|S|=k$ for some k with $2 \leq k \leq t$ such that $|N(S) \cap N(u)| \leq k-1$ (note that $k=1$ implies diam $(G) \geq 3$, a contradiction). Since $d(u) \geq \frac{n}{2}$, we have $2 \leq t \leq \frac{n-2}{2}$. Hence $|E(N(u), T)| \leq t(n-1-t)-k(n-1-t-(k-1))=t(n-1-t)-k(n-t-k)$ where $E(N(u), T)$ is the set of edges between $N(u)$ and T. So the number of missing edges between $N(u)$ and T is at least $k(n-t-k)$. We set $g(k)=k(n-t-k)$. Then $g(k)$ is concave in k since the second derivative is -2 and therefore $g(k) \geq \min \{g(2), g(t)\} \geq n-2$ for all $2 \leq k \leq t \leq \frac{n-2}{2}$, where $g(2) \geq n-2$ and $g(t) \geq g\left(\frac{n-2}{2}\right)=n-2$. Since $E(N(u), T) \subseteq E(H)$ and at least $g(k)$ edges are missing from H, we obtain $|E(H)| \leq\binom{ n-1}{2}-(n-2)=\binom{n-2}{2}<\binom{n-2}{2}+1$, a contradiction. Applying Lemma 1 implies that G is 2-rainbow connected.

https://daneshyari.com/en/article/418472

Download Persian Version:

https://daneshyari.com/article/418472

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: a.kemnitz@tu-bs.de (A. Kemnitz), Ingo.Schiermeyer@tu-freiberg.de (I. Schiermeyer).

