Note

On the geodetic iteration number of the contour of a graph

Mauro Mezzini
Department of Educational Sciences, Roma Tre University, Italy

A R TICLE INFO

Article history:

Received 17 September 2015
Received in revised form 1 December 2015
Accepted 13 February 2016
Available online 9 March 2016

Keywords:

Geodetic iteration number
Contour of a graph
Geodesic convexity

Abstract

Let G be a graph and S be a subset of vertices of G. With $I[S]$ we denote the set of all vertices on some geodesic (shortest path) between two vertices of S. A contour vertex of a graph is one whose eccentricity is at least as big as all its neighbors' eccentricities. Let C be the set of contour vertices of a graph. We provide the first example of a graph where $I[I[C]]$ do not coincide with the vertex set of the graph.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of abstract convexity leads to the generalization of the classical concept of a Euclidean convex set to finite structures such as graphs. Among the various notions of convexity in graphs, geodesic convexity, based on the concept of shortest path, is the most widely studied [7,8,6].

A geodesic is a shortest path between a pair of vertices of a graph G. The interval $I[u, v]$ is the set of all vertices lying in some geodesic between u and v. Given a set of vertices $S, I[S]$ is defined as

$$
I[S]=\bigcup_{\{u, v\} \subseteq S} I[u, v] .
$$

Furthermore we denote by $I^{k}[S], I[S]$ if $k=1$ and $I\left[I^{k-1}[S]\right]$ if $k>1, k$ integer. A subset S of vertices of a graph is said to be convex if $S=I[S]$. If S is not convex the convex hull of S is the set S_{k} obtained at the end of the following sequence: $S_{0}=S$, $S_{1}=I[S], \ldots, S_{i}=I^{i}[S]$. The sequence ends when $S_{k}=I^{k+1}[S]$ and the minimum k for which the above sequence ends, is called the geodetic iteration number of S, denoted as $\operatorname{gin}(S)$ [4]. A set S of vertices is geodetic if its interval is the vertex set of G, that is if $I[S]=V(G)$. The eccentricity of a vertex v, denoted as ecc (v), is the maximum distance of v from any other vertex of G. A contour vertex of G is a vertex v whose eccentricity is greater or equal to that of every vertex adjacent to v. The contour of G is the set of contour vertices of $V(G)$, denoted as $C t(G)$.

Cáceres et al. [3] showed that the convex hull of the contour of a graph does coincide with the vertex set of the graph. Hence $\operatorname{gin}(C t(G))$ is the minimum k such that $I^{k}[C t(G)]=V(G)$. In the same paper the authors showed that if the graph is distance-hereditary, every convex set can be "rebuilded" from its contour vertices by applying the interval operation, that is: the contour of a distance-hereditary graph is geodetic. Later on, a number of works in literature focused on determining for which classes of graphs the set of contour vertices is geodetic. It was proved that, for chordal graphs [2], for 3-Steiner distance hereditary graphs [5], for HHD-graphs [5,9], for cochordal graphs [1] and for cactus [9] the contour is geodetic. More recently it has been determined that the contour is geodetic also for the class of bridged graphs [10].

In $[2,1,9]$, it has been shown the existence of graphs for which $I[C t(G)] \neq V(G)$. However, the question of whether the $\operatorname{gin}(C t(G)) \leq 2$ remained open for more than a decade. In this paper we will provide a negative answer to the above question by showing a graph in which $I^{2}[C t(G)] \neq V(G)$.

[^0]
2. A graph in which $I^{2}[C t(G)] \neq V(G)$

In this section first we present some results which led me to the construction of a graph G in which $I^{2}[C t(G)] \neq V(G)$, but can be interesting on their own. Next, we present a graph for which $\operatorname{gin}(\operatorname{Ct}(G))=3$, that is $I[C t(G)]$ is not geodetic.

In what follows G will be a connected graph. $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. A sequence of distinct vertices of G, v_{0}, \ldots, v_{k}, where $k \geq 0$, and v_{i} and $v_{i+1}, 0 \leq i<k$, are adjacent, is a $v_{0}-v_{k}$ path of length k. We will denote by $V(p)$ the set of vertices in a path p. A $u-v$ geodesic is a $u-v$ path of minimum length. The distance $d(u, v)$ between two vertices of G is the length of a $u-v$ geodesic.

A vertex v is an eccentric vertex of u if $d(u, v)=e c c(u)$. The set of eccentric vertices of u is denoted as $\mathcal{E}(u)$. The maximum eccentricity among the vertices of G is the diameter of a graph G, denoted as $\operatorname{diam}(G)$ and the minimum eccentricity is the radius of the graph, denoted as $\operatorname{rad}(G)$. Given a vertex $v \in V(G)$, let us denote as hi (v), the set of vertices such that $u \in h i(v)$ if and only if there exists a path $p=u_{0}, \ldots, u_{k}$, with $v=u_{0}$ and $u=u_{k}$, such that $\operatorname{ecc}\left(u_{i+1}\right)=\operatorname{ecc}\left(u_{i}\right)+1,0 \leq i<k$ and $k>0 ; p$ will be called a trail from v to u. Note that if $v \in C t(G)$ then $\operatorname{hi}(v)=\emptyset$ and if $\operatorname{hi}(v) \neq \emptyset$ then $\operatorname{hi}(v) \cap C t(G) \neq \emptyset$.

Lemma 1 ([2]). Let G be a graph and let $v \in V(G), u \in h i(v)$ and p a trail from v to u. For every eccentric vertex x of u there is a $u-x$ geodesic containing v. Furthermore x is an eccentric vertex for each $z \in V(p)$.

Lemma 2. If $\operatorname{I}[C t(G)]$ is not geodetic then there exist six vertices $a_{i}, 1 \leq i \leq 6$ such that

1. $a_{1} \notin I[I[C t(G)]]$ and $a_{1} \notin I[C t(G)]$
2. $a_{2} \in \operatorname{hi}\left(a_{1}\right) \cap C t(G)$
3. $a_{3} \in \mathcal{E}\left(a_{2}\right), a_{3} \notin \operatorname{Ct}(G)$
4. $a_{4} \in h i\left(a_{3}\right) \cap C t(G)$
5. $a_{5} \in \mathcal{E}\left(a_{4}\right), a_{5} \notin \operatorname{Ct}(G)$
6. $a_{6} \in \operatorname{hi}\left(a_{5}\right) \cap C t(G)$
7. The six vertices are distinct and $\operatorname{ecc}\left(a_{6}\right) \geq \operatorname{ecc}\left(a_{1}\right)+3$.

Proof of 1. If $I[C t(G)]$ is not geodetic then let $a_{1} \in V(G) \backslash I[I[C t(G)]]$. Of course $a_{1} \notin I[C t(G)]$.
Proof of 2 . Since by (1), $a_{1} \notin C t(G)$ then $h i\left(a_{1}\right) \neq \emptyset$. So we let a_{2} be a vertex in $\operatorname{hi}\left(a_{1}\right) \cap C t(G)$.
Proof of 3. By Lemma 1, for every $v \in \mathcal{E}\left(a_{2}\right)$ there exists a $a_{2}-v$ geodesic containing a_{1}. Let $a_{3} \in \mathcal{E}\left(a_{2}\right)$. If $a_{3} \in \operatorname{Ct}(G)$ then $a_{1} \in I[C t(G)]$ a contradiction of (1).
Proof of 4. Let $a_{4} \in h i\left(a_{3}\right) \cap C t(G)$.
Proof of 5. If $I[C t(G)]$ is not geodetic then, by Lemma 1, for every $v \in \mathcal{E}\left(a_{4}\right)$ we have that $v \notin C t(G)$, for otherwise $a_{3} \in I[C t(G)]$ and then $a_{1} \in I[I[C t(G)]]$. Therefore let $a_{5} \in \mathcal{E}\left(a_{4}\right)$.
Proof of 6. Let $a_{6} \in \operatorname{hi}\left(a_{5}\right) \cap C t(G)$.
Proof of 7. Since $a_{1} \notin \operatorname{Ct}(G)$ then $\operatorname{ecc}\left(a_{2}\right)>\operatorname{ecc}\left(a_{1}\right)$. Therefore $a_{2} \neq a_{1}$. It cannot be that $\operatorname{ecc}\left(a_{2}\right)=1$ for otherwise $\operatorname{ecc}\left(a_{1}\right)=$ 0 which is not possible. Therefore we have that $a_{3} \notin\left\{a_{2}, a_{1}\right\}$. Furthermore since ecc $\left(a_{4}\right)>\operatorname{ecc}\left(a_{3}\right) \geq \operatorname{ecc}\left(a_{2}\right)>\operatorname{ecc}\left(a_{1}\right)$ we have that $a_{4} \notin\left\{a_{3}, a_{2}, a_{1}\right\}$. Analogously since $\operatorname{ecc}\left(a_{5}\right) \geq \operatorname{ecc}\left(a_{4}\right)$ we have that $a_{5} \notin\left\{a_{4}, a_{3}, a_{2}, a_{1}\right\}$. Finally since $a_{5} \notin \operatorname{Ct}(G)$ then $\operatorname{ecc}\left(a_{6}\right)>\operatorname{ecc}\left(a_{5}\right)$ and $a_{6} \notin\left\{a_{5}, a_{4}, a_{3}, a_{2}, a_{1}\right\}$. So all the six vertices are distinct. By what said above we have that

$$
\operatorname{ecc}\left(a_{6}\right)>\operatorname{ecc}\left(a_{5}\right) \geq \operatorname{ecc}\left(a_{4}\right)>\operatorname{ecc}\left(a_{3}\right) \geq \operatorname{ecc}\left(a_{2}\right)>\operatorname{ecc}\left(a_{1}\right)
$$

and then $\operatorname{ecc}\left(a_{6}\right) \geq \operatorname{ecc}\left(a_{1}\right)+3$.
Theorem 3. Let G be a graph. If $\operatorname{diam}(G) \leq 6$, then $I[C t(G)]$ is geodetic.
Proof. In [1], it is shown that if $\operatorname{diam}(G) \leq 4$, then $C t(G)$ is geodetic. Suppose by contradiction that $5 \leq \operatorname{diam}(G) \leq 6$ and that $I[C t(G)]$ is not geodetic. Let $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ be a set of six vertices as in Lemma 2 . Since $\operatorname{diam}(G) \leq 2 \operatorname{rad}(G)$ we have that $\operatorname{ecc}\left(a_{1}\right) \geq 3$ and by (7) of Lemma 2, we would have that ecc $\left(a_{6}\right) \geq \operatorname{ecc}\left(a_{1}\right)+3 \geq 6$ so we cannot have that diam $(G)=5$. Suppose then that $\operatorname{diam}(G)=6$. If ecc $\left(a_{1}\right)>3$, by (7) of Lemma 2 , we would have that ecc $\left(a_{6}\right) \geq \operatorname{ecc}\left(a_{1}\right)+3 \geq 7$. So we must have that ecc $\left(a_{1}\right)=3$. Let $v \in \mathcal{E}\left(a_{6}\right)$. Then $d\left(a_{1}, v\right) \leq 3$ and $d\left(a_{1}, a_{6}\right) \leq 3$. If $d\left(a_{1}, v\right)<3$ or $d\left(a_{1}, a_{6}\right)<3$ we can construct a path from a_{6} to v whose length l is less than 6 (a contradiction). So we must have that $d\left(a_{1}, v\right)=d\left(a_{1}, a_{6}\right)=3$. But then a_{1} would be in a $a_{6}-v$ geodesic where both a_{6} and v are in $C t(G)$, contrary to the hypothesis.

Lemma 4. Let G be a graph such that $I[C t(G)]$ is not geodetic and diam $(G)=7$. Let $\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ be a set of six vertices as in Lemma 2. Let p be a $a_{2}-a_{3}$ geodesic containing a_{1} and let $a \in V(p)$ be the vertex adjacent to a_{1} which is nearest to a_{3}. Then $\operatorname{ecc}(a) \leq \operatorname{ecc}\left(a_{1}\right)$.

https://daneshyari.com/en/article/418520

Download Persian Version:
https://daneshyari.com/article/418520

Daneshyari.com

[^0]: E-mail address: mezzini@di.uniroma1.it.
 http://dx.doi.org/10.1016/j.dam.2016.02.012
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

