Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the geodetic iteration number of the contour of a graph

Mauro Mezzini

Department of Educational Sciences, Roma Tre University, Italy

ARTICLE INFO

ABSTRACT

Article history: Received 17 September 2015 Received in revised form 1 December 2015 Accepted 13 February 2016 Available online 9 March 2016

Keywords: Geodetic iteration number Contour of a graph Geodesic convexity

1. Introduction

The study of abstract convexity leads to the generalization of the classical concept of a Euclidean convex set to finite

coincide with the vertex set of the graph.

Let G be a graph and S be a subset of vertices of G. With I[S] we denote the set of all vertices

on some geodesic (shortest path) between two vertices of S. A contour vertex of a graph is

one whose eccentricity is at least as big as all its neighbors' eccentricities. Let C be the set

of contour vertices of a graph. We provide the first example of a graph where I[I[C]] do not

structures such as graphs. Among the various notions of convexity in graphs, geodesic convexity, based on the concept of shortest path, is the most widely studied [7,8,6].

A geodesic is a shortest path between a pair of vertices of a graph G. The interval I[u, v] is the set of all vertices lying in some geodesic between u and v. Given a set of vertices S, I[S] is defined as

$$I[S] = \bigcup_{\{u,v\}\subseteq S} I[u,v]$$

Furthermore we denote by $I^k[S]$, I[S] if k = 1 and $I[I^{k-1}[S]]$ if k > 1, k integer. A subset S of vertices of a graph is said to be *convex* if S = I[S]. If S is not convex the *convex hull* of S is the set S_k obtained at the end of the following sequence: $S_0 = S$, $S_1 = I[S], \ldots, S_i = I^i[S]$. The sequence ends when $S_k = I^{k+1}[S]$ and the minimum k for which the above sequence ends, is called the geodetic iteration number of S, denoted as gin(S) [4]. A set S of vertices is geodetic if its interval is the vertex set of G, that is if I[S] = V(G). The eccentricity of a vertex v, denoted as ecc(v), is the maximum distance of v from any other vertex of G. A contour vertex of G is a vertex v whose eccentricity is greater or equal to that of every vertex adjacent to v. The *contour* of *G* is the set of contour vertices of V(G), denoted as Ct(G).

Cáceres et al. [3] showed that the convex hull of the contour of a graph does coincide with the vertex set of the graph. Hence gin(Ct(G)) is the minimum k such that $I^{k}[Ct(G)] = V(G)$. In the same paper the authors showed that if the graph is distance-hereditary, every convex set can be "rebuilded" from its contour vertices by applying the interval operation, that is: the contour of a distance-hereditary graph is geodetic. Later on, a number of works in literature focused on determining for which classes of graphs the set of contour vertices is geodetic. It was proved that, for chordal graphs [2], for 3-Steiner distance hereditary graphs [5], for HHD-graphs [5,9], for cochordal graphs [1] and for cactus [9] the contour is geodetic. More recently it has been determined that the contour is geodetic also for the class of bridged graphs [10].

In [2,1,9], it has been shown the existence of graphs for which $I[Ct(G)] \neq V(G)$. However, the question of whether the $gin(Ct(G)) \leq 2$ remained open for more than a decade. In this paper we will provide a negative answer to the above question by showing a graph in which $I^2[Ct(G)] \neq V(G)$.

http://dx.doi.org/10.1016/j.dam.2016.02.012 0166-218X/© 2016 Elsevier B.V. All rights reserved.

Note

© 2016 Elsevier B.V. All rights reserved.

E-mail address: mezzini@di.uniroma1.it.

2. A graph in which $I^2[Ct(G)] \neq V(G)$

In this section first we present some results which led me to the construction of a graph *G* in which $I^2[Ct(G)] \neq V(G)$, but can be interesting on their own. Next, we present a graph for which gin(Ct(G)) = 3, that is I[Ct(G)] is not geodetic.

In what follows *G* will be a connected graph. V(G) and E(G) denote the vertex set and the edge set of *G*, respectively. A sequence of distinct vertices of *G*, v_0, \ldots, v_k , where $k \ge 0$, and v_i and v_{i+1} , $0 \le i < k$, are adjacent, is a v_0-v_k path of length *k*. We will denote by V(p) the set of vertices in a path *p*. A u-v geodesic is a u-v path of minimum length. The distance d(u, v) between two vertices of *G* is the length of a u-v geodesic.

A vertex v is an *eccentric* vertex of u if d(u, v) = ecc(u). The set of eccentric vertices of u is denoted as $\mathcal{E}(u)$. The maximum eccentricity among the vertices of G is the *diameter* of a graph G, denoted as diam(G) and the minimum eccentricity is the *radius* of the graph, denoted as rad(G). Given a vertex $v \in V(G)$, let us denote as hi(v), the set of vertices such that $u \in hi(v)$ if and only if there exists a path $p = u_0, \ldots, u_k$, with $v = u_0$ and $u = u_k$, such that $ecc(u_{i+1}) = ecc(u_i) + 1$, $0 \le i < k$ and k > 0; p will be called a *trail* from v to u. Note that if $v \in Ct(G)$ then $hi(v) = \emptyset$ and if $hi(v) \neq \emptyset$ then $hi(v) \cap Ct(G) \neq \emptyset$.

Lemma 1 ([2]). Let G be a graph and let $v \in V(G)$, $u \in hi(v)$ and p a trail from v to u. For every eccentric vertex x of u there is a u-x geodesic containing v. Furthermore x is an eccentric vertex for each $z \in V(p)$.

Lemma 2. If I[Ct(G)] is not geodetic then there exist six vertices a_i , $1 \le i \le 6$ such that

1. $a_1 \notin I[I[Ct(G)]]$ and $a_1 \notin I[Ct(G)]$

2. $a_2 \in hi(a_1) \cap Ct(G)$

3. $a_3 \in \mathcal{E}(a_2), a_3 \notin Ct(G)$

4. $a_4 \in hi(a_3) \cap Ct(G)$

5. $a_5 \in \mathcal{E}(a_4)$, $a_5 \notin Ct(G)$

6. $a_6 \in hi(a_5) \cap Ct(G)$

7. The six vertices are distinct and $ecc(a_6) \ge ecc(a_1) + 3$.

Proof of 1. If I[Ct(G)] is not geodetic then let $a_1 \in V(G) \setminus I[I[Ct(G)]]$. Of course $a_1 \notin I[Ct(G)]$.

Proof of 2. Since by (1), $a_1 \notin Ct(G)$ then $hi(a_1) \neq \emptyset$. So we let a_2 be a vertex in $hi(a_1) \cap Ct(G)$.

Proof of 3. By Lemma 1, for every $v \in \mathcal{E}(a_2)$ there exists a a_2-v geodesic containing a_1 . Let $a_3 \in \mathcal{E}(a_2)$. If $a_3 \in Ct(G)$ then $a_1 \in I[Ct(G)]$ a contradiction of (1).

Proof of 4. Let $a_4 \in hi(a_3) \cap Ct(G)$.

Proof of 5. If I[Ct(G)] is not geodetic then, by Lemma 1, for every $v \in \mathcal{E}(a_4)$ we have that $v \notin Ct(G)$, for otherwise $a_3 \in I[Ct(G)]$ and then $a_1 \in I[I[Ct(G)]]$. Therefore let $a_5 \in \mathcal{E}(a_4)$.

Proof of 6. Let $a_6 \in hi(a_5) \cap Ct(G)$.

Proof of 7. Since $a_1 \notin Ct(G)$ then $ecc(a_2) > ecc(a_1)$. Therefore $a_2 \neq a_1$. It cannot be that $ecc(a_2) = 1$ for otherwise $ecc(a_1) = 0$ which is not possible. Therefore we have that $a_3 \notin \{a_2, a_1\}$. Furthermore since $ecc(a_4) > ecc(a_3) \ge ecc(a_2) > ecc(a_1)$ we have that $a_4 \notin \{a_3, a_2, a_1\}$. Analogously since $ecc(a_5) \ge ecc(a_4)$ we have that $a_5 \notin \{a_4, a_3, a_2, a_1\}$. Finally since $a_5 \notin Ct(G)$ then $ecc(a_6) > ecc(a_5)$ and $a_6 \notin \{a_5, a_4, a_3, a_2, a_1\}$. So all the six vertices are distinct. By what said above we have that

 $ecc(a_6) > ecc(a_5) \ge ecc(a_4) > ecc(a_3) \ge ecc(a_2) > ecc(a_1)$

and then $ecc(a_6) \ge ecc(a_1) + 3$.

Theorem 3. Let G be a graph. If $diam(G) \le 6$, then I[Ct(G)] is geodetic.

Proof. In [1], it is shown that if $diam(G) \le 4$, then Ct(G) is geodetic. Suppose by contradiction that $5 \le diam(G) \le 6$ and that I[Ct(G)] is not geodetic. Let $\{a_1, a_2, a_3, a_4, a_5, a_6\}$ be a set of six vertices as in Lemma 2. Since $diam(G) \le 2 \operatorname{rad}(G)$ we have that $ecc(a_1) \ge 3$ and by (7) of Lemma 2, we would have that $ecc(a_6) \ge ecc(a_1) + 3 \ge 6$ so we cannot have that diam(G) = 5. Suppose then that diam(G) = 6. If $ecc(a_1) > 3$, by (7) of Lemma 2, we would have that $ecc(a_6) \ge ecc(a_1) + 3 \ge 7$. So we must have that $ecc(a_1) = 3$. Let $v \in \mathcal{E}(a_6)$. Then $d(a_1, v) \le 3$ and $d(a_1, a_6) \le 3$. If $d(a_1, v) < 3$ or $d(a_1, a_6) < 3$ we can construct a path from a_6 to v whose length l is less than 6 (a contradiction). So we must have that $d(a_1, v) = d(a_1, a_6) = 3$. But then a_1 would be in a a_6 -v geodesic where both a_6 and v are in Ct(G), contrary to the hypothesis. \Box

Lemma 4. Let *G* be a graph such that I[Ct(G)] is not geodetic and diam(G) = 7. Let $\{a_1, a_2, a_3, a_4, a_5, a_6\}$ be a set of six vertices as in Lemma 2. Let *p* be a a_2-a_3 geodesic containing a_1 and let $a \in V(p)$ be the vertex adjacent to a_1 which is nearest to a_3 . Then $ecc(a) \leq ecc(a_1)$.

Download English Version:

https://daneshyari.com/en/article/418520

Download Persian Version:

https://daneshyari.com/article/418520

Daneshyari.com