
Discrete Applied Mathematics 208 (2016) 41–58

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Multitasking via alternate and shared processing: Algorithms
and complexity
Nicholas G. Hall a, Joseph Y.-T. Leung b, Chung-Lun Li c,∗
a Fisher College of Business, The Ohio State University, Columbus, OH 43210, United States
b Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
c Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:
Received 30 September 2014
Received in revised form 17 March 2016
Accepted 29 March 2016
Available online 25 April 2016

Keywords:
Scheduling
Motivations for multitasking
Efficient algorithm
Intractability

a b s t r a c t

This work is motivated by disruptions that occur when jobs are processed by humans,
rather than by machines. For example, humans may become tired, bored, or distracted.
This paper presents two scheduling models with multitasking features. These models aim
to mitigate the loss of productivity in such situations. The first model applies ‘‘alternate
period processing’’ and aims either to allow workers to take breaks or to increase workers’
job variety. The second model applies ‘‘shared processing’’ and aims to allow workers
to share a fixed portion of their processing capacities between their primary tasks and
routine activities. For eachmodel,we consider four of themostwidely studied and practical
classical scheduling objectives. Our purpose is to study the complexity of the resulting
scheduling problems. For some problems, we describe a fast optimal algorithm, whereas
for other problems an intractability result suggests the probable nonexistence of such an
algorithm.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When jobs are processed by humans rather thanmachines, different issues arise. For example, humansmay become tired,
bored, or distracted. These issues disrupt work and often result in a significant loss of productivity. Hence, companies look
for system designs that can alleviate this loss. In this paper, we study a simple scheduling system that faces such disruptions,
and we propose and analyze two system designs for two different types of disruptions.

The first type of disruption involves workers becoming tired by longwork hours or bored by the repetitive nature of their
work. As a response, we divide the time horizon into alternating work periods of lengths τo and τe. We refer to the work
periods of length τo as odd periods and to the work periods of length τe as even periods. We require each task to be processed
either completely within the odd periods or completely within the even periods. For example, a task that is partly processed
in period 1 cannot be further processed in period 2 or any other even periods; however, it can be processed further in period 3
or any other odd periods. An application of this design is to operate a service center in two shifts, e.g., a day shift and a night
shift, where one worker (or one team of workers) serves the first shift, and another worker (or team) serves the second
shift. Each task can only be served by one worker (or team), and therefore must stay within either shift. This system design
offers advantages where confidentiality or personal service considerations are important. Example applications include tax

∗ Corresponding author.
E-mail addresses: hall.33@osu.edu (N.G. Hall), leung@cis.njit.edu (J.Y.-T. Leung), chung-lun.li@polyu.edu.hk (C.-L. Li).

http://dx.doi.org/10.1016/j.dam.2016.03.018
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.03.018
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.03.018&domain=pdf
mailto:hall.33@osu.edu
mailto:leung@cis.njit.edu
mailto:chung-lun.li@polyu.edu.hk
http://dx.doi.org/10.1016/j.dam.2016.03.018


42 N.G. Hall et al. / Discrete Applied Mathematics 208 (2016) 41–58

preparation, financial audit, legal, medical, counseling, and other professional services. Further, operating the service center
in two shifts enables the company to increase the utilization of office space and to provide longer service hours without
disrupting the operation or overloading the workers. In this application, the service center is viewed as a processor, and the
workers’ (or teams’) availability imposes a constraint on the job schedule. Another application allows a worker to divide
his/her workday into two periods and work on two different sets of tasks at two different locations (e.g., a work office and
a home office) during the two periods, thus providing greater personal convenience and job variety. In this application, the
worker is viewed as a processor, and the office location imposes a constraint on the job schedule.

The second type of disruption involves workers becoming distracted, for example, by the need to undertake routine tasks
such as system maintenance or intraoffice communications. In response, we propose a system design that allows a worker
(or team) to continue work on its main, or primary tasks. However, it allocates a fixed percentage, say 100 × (1 − e)%, of
its processing capacity to process routine scheduled activities as they occur. This allows the routine scheduled activities,
for example, administrative meetings, maintenance work, or meal breaks, to be completed promptly without stopping the
primary tasks. An application of this design designates a two-hour lunch period per day, letting one half of theworking team
have a one hour lunch break during each hour. In this example, the working team is viewed as a processor, and e = 0.5.
One advantage of this arrangement is to keep the office open continuously so that no incoming request is missed. Another
application allows rotating Saturday shifts, where the company onlymaintains a fraction, for example 33%, of the workforce
every Saturday.

Both of these designs make use of the concept of multitasking, even though they are developed for two very different
motivations. The first design allows the processor to put an unfinished task on hold and switch to another task, while the
second design allows the processor to process two tasks simultaneously with shared capacity. These designs are developed
for application to awide variety of situations.We anticipate that they could be used as simpleworkplace ruleswhichworkers
would be expected to follow. They are not intended to be robust against all possible instances.

The concept of multitasking is a familiar one in computer systems. It can be defined as follows, ‘‘In computing,
multitasking is a method where multiple tasks, also known as processes, share common processing resources such as
a CPU’’ [1]. An operational definition of multitasking is that more than one task can be partially executed at the same
time. Sachdeva and Panwar [19] review various scheduling algorithms that are needed for multitasking. Multitasking
algorithms for generic applications are discussed by [7]. Models and algorithms for efficient computer multitasking in
specific applications have been studied by various researchers. These include Noguera and Badia [17] and Steiger et al. [21]
for reconfigurable architectures, and Wang et al. [24] for energy-aware dynamic slack allocation.

Scheduling systems with human multitasking are studied by Hall et al. [8]. They identify several principal motivations
for multitasking, and provide supporting references from the literature of behavioral psychology, operations management,
cognitive engineering, and project management. Those motivations include:

(i) a need to feel or appear productive;
(ii) a need to demonstrate progress on different tasks or treat task owners equitably;
(iii) anxiety about the processing requirements of waiting tasks;
(iv) a need for variety in work; and
(v) interruption by routine scheduled activities.

Since classical scheduling algorithms typically fail to achieve optimal efficiency in the presence of multitasking, the
authors develop new solution procedures for those problems. They also study the extent by which multitasking increases
scheduling cost or value. However, the models developed in that work do not distinguish between different motivations for
multitasking. Hence, when a primary task is being processed, it is interrupted by all the unfinished tasks. By contrast, our
first system design can be viewed as a possible solution to motivation (iv), while our second system design can be viewed
as a possible solution to motivation (v).

Our first design is similar to the classical two-parallel-machine scheduling problem, however the first machine is
unavailable during periods [τo, τo + τe], [2τo + τe, 2(τo + τe)], [2(τo + τe) + τo, 3(τo + τe)], . . . , and the second machine
is unavailable during periods [0, τo], [τo + τe, 2τo + τe], [2(τo + τe), 2(τo + τe) + τo], . . . Our second design is related to
scheduling a single machine with machine unavailability. For example, if e = 0, the worker (or team) becomes unavailable
whenever he/she encounters a scheduled routine activity. Hence, both designs are scheduling models with some machine
unavailability. Ma et al. [15] provide a survey of 85 papers on scheduling with deterministic machine unavailability periods.
Kaabi and Harrath [13] provide a survey of parallel machine scheduling with machine availability constraints. More recent
works within this research stream include [2,9,11,14,23], which consider various single and parallel machine models with
machine unavailability periods.

The scheduling environment that we consider, under both system designs, is as follows. Consistent with the classical
scheduling terminology, we refer to the work center as a ‘‘machine’’ and the tasks as ‘‘jobs’’. We let N = {1, . . . , n} denote
a given set of jobs with integer data. Job j has a processing requirement pj > 0, and we let P =

n
j=1 pj. If job j has to share

processing capacity with other jobs, the time during which it is being processed may exceed pj. In some of the problems
we consider, job j also has a due date dj ≥ 0 and/or a weight wj > 0, for j = 1, . . . , n. A single machine is available for
processing the jobs.

In any feasible schedule σ , we let Cj(σ ) denote the completion time of job j. We define the lateness of job j as Lj(σ ) =

Cj(σ ) − dj, and we let Lmax = max1≤j≤n{Lj}, and Uj(σ ) = 1 if Cj(σ ) > dj and Uj(σ ) = 0 otherwise. Whenever the schedule
being considered is clear from context, we omit the argument σ .



Download English Version:

https://daneshyari.com/en/article/418716

Download Persian Version:

https://daneshyari.com/article/418716

Daneshyari.com

https://daneshyari.com/en/article/418716
https://daneshyari.com/article/418716
https://daneshyari.com

