Hull number: P_{5}-free graphs and reduction rules ${ }^{\star}$

J. Araujo ${ }^{\text {a,b,c,* }}$, G. Morel ${ }^{\text {a }}$, L. Sampaio ${ }^{\mathrm{e}}$, R. Soares ${ }^{\text {a,b }}$, V. Weber ${ }^{\text {d,f }}$
${ }^{\text {a }}$ COATI Project, I3S (CNRS \&' UNS) and INRIA, INRIA Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France
${ }^{\text {b }}$ ParGO Research Group, Universidade Federal do Ceará, Campus do Pici, Bloco 910, 60455-760, Fortaleza, Ceará, Brazil
${ }^{\text {c }}$ Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici, Bloco 914, 60455-760, Fortaleza, Ceará, Brazil
${ }^{\text {d }}$ Grenoble-INP / UJF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, F-38031, France
${ }^{\mathrm{e}}$ Universidade Estadual do Ceará (UECE) - Fortaleza, CE, Brazil
${ }^{\mathrm{f}}$ Amadeus S.A.S, 485 Route du Pin Montard, 06560 Sophia Antipolis, France

A R TICLE INFO

Article history:

Received 10 January 2014
Accepted 30 March 2015
Available online 9 September 2015

Keywords:

Graph convexity
Hull number
Geodesic convexity
P_{5}-free graphs
Lexicographic product
Parameterized complexity
Neighborhood diversity

Abstract

In this paper, we study the (geodesic) hull number of graphs. For any two vertices $u, v \in V$ of a connected undirected graph $G=(V, E)$, the closed interval $I[u, v]$ of u and v is the set of vertices that belong to some shortest (u, v)-path. For any $S \subseteq V$, let $I[S]=\bigcup_{u, v \in S} I[u, v]$. A subset $S \subseteq V$ is (geodesically) convex if $I[S]=S$. Given a subset $S \subseteq V$, the convex hull $I_{h}[S]$ of S is the smallest convex set that contains S. We say that S is a hull set of G if $I_{h}[S]=V$. The size of a minimum hull set of G is the hull number of G, denoted by $h n(G)$.

First, we show a polynomial-time algorithm to compute the hull number of any P_{5}-free triangle-free graph. Then, we present four reduction rules based on vertices with the same neighborhood. We use these reduction rules to propose a fixed parameter tractable algorithm to compute the hull number of any graph G, where the parameter can be the size of a vertex cover of G or, more generally, its neighborhood diversity, and we also use these reductions to characterize the hull number of the lexicographic product of any two graphs.

 © 2015 Elsevier B.V. All rights reserved.
1. Introduction

All graphs in this work are undirected, simple and loop-less. Given a connected graph $G=(V, E)$, the closed interval $I[u, v]$ of any two vertices $u, v \in V$ is the set of vertices that belong to some $u-v$ geodesic of G, i.e. some shortest (u, v)-path. For any $S \subseteq V$, let $I[S]=\bigcup_{u, v \in S} I[u, v]$. A subset $S \subseteq V$ is (geodesically) convex if $I[S]=S$. Given a subset $S \subseteq V$, the convex hull $I_{h}[S]$ of S is the smallest convex set that contains S. We say that a vertex v is generated by a set of vertices S if $v \in I_{h}[S]$. We say that S is a hull set of G if $I_{h}[S]=V$. The size of a minimum hull set of G is the hull number of G, denoted by hn (G) [8].

It is known that the problem of computing $h n(G)$ is NP-hard for bipartite graphs [3]. Several bounds on the hull number of triangle-free graphs are presented in [7]. In [6], the authors show, among other results, that the hull number of any P_{4}-free graph, i.e. any graph without induced path with four vertices, can be computed in polynomial time. In Section 3, we show a linear-time algorithm to compute the hull number of any P_{5}-free triangle-free graph.

[^0]In Section 4, we show four reduction rules to obtain, from a graph G, another graph G^{*} that has one vertex less than G and which satisfies either $h n(G)=h n\left(G^{*}\right)$ or $h n(G)=h n\left(G^{*}\right)+1$, according to the used rule. We then first use these rules to obtain a fixed parameter tractable (FPT) algorithm, where the parameter is the neighborhood diversity of the input graph. For definitions on Parameterized Complexity we refer to [9]. Given a graph G and vertices $u, v \in V(G)$, we say that u and v are twins (a.k.a. of the same type) if $N(v) \backslash\{u\}=N(u) \backslash\{v\}$. The neighborhood diversity of a graph is k, if its vertex set can be partitioned into k sets S_{1}, \ldots, S_{k}, such that any pair of vertices $u, v \in S_{i}$ are twins. This parameter was proposed in [11], motivated by the fact that a graph of bounded vertex cover also has bounded neighborhood diversity, and therefore the later parameter can be used to obtain more general results. To see that a graph of bounded vertex cover has bounded neighborhood diversity, let G be a graph that has a minimal vertex cover $S \subseteq V(G)$ of size k, and let $I=V(G) \backslash S$. Since S is a vertex cover, I is an independent set. Therefore, the neighborhood of any vertex in I is contained in S, and since there are 2^{k} distinct subsets of S, there exists a partition by vertices of the same type of I with at most 2^{k} parts. The vertices in S may be partitioned in k sets of singletons, what gives a partition of the vertices of the graph into $k+2^{k}$ sets of twin vertices. Then, the neighborhood diversity of the graph is at most $k+2^{k}$. Many problems have been shown to be FPT when the parameter is the neighborhood diversity [10].

Finally, we use these rules to characterize the hull number of the lexicographic product of any two graphs. Given two graphs G and H, the lexicographic product $G \circ H$ is the graph whose vertex set is $V(G \circ H)=V(G) \times V(H)$ and such that two vertices $\left(g_{1}, h_{1}\right)$ and $\left(g_{2}, h_{2}\right)$ are adjacent if, and only if, either $g_{1} g_{2} \in E(G)$ or we have that both $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(G)$.

It is known in the literature a characterization of the (geodesic) convex sets in the lexicographic product of two graphs [1] and a study of the pre-hull number for this product [13]. There are also some results concerning the hull number of the Cartesian and strong products of graphs [4,5].

2. Preliminaries

Let us recall some definitions and lemmas that we use in the sequel.
We denote by $N_{G}(v)$ (or simply $N(v)$) the neighborhood of a vertex. A vertex v is simplicial (resp. universal) if $N(v)$ is a clique (resp. is equal to $V(G) \backslash\{v\})$. Let $d_{G}(u, v)$ denote the distance between u and v, i.e. the length of a shortest (u, v)-path. A subgraph $H \subseteq G$ is isometric if, for each $u, v \in V(H), d_{H}(u, v)=d_{G}(u, v)$. A P_{k} (resp. C_{k}) in a graph G denotes an induced path (resp. cycle) on k vertices. Given a graph H, we say that a graph G is H-free if G does not contain H as an induced subgraph. Moreover, we consider that all the graphs in this work are connected. Indeed, if a graph G is not connected, its hull number can be computed by the sum of the hull numbers of its connected components [6].

Lemma 1 ([8]). For any hull set S of a graph G, S contains all simplicial vertices of G.
Lemma 2 ([6]). Let G be a graph which is not complete. No hull set of G with cardinality hn(G) contains a universal vertex.
Lemma 3 ([6]). Let G be a graph, H be an isometric subgraph of G and S be any hull set of H. Then, the convex hull of S in G contains $V(H)$.

Lemma 4 ([6]). Let G be a graph and S a proper and non-empty subset of $V(G)$. If $V(G) \backslash S$ is convex, then every hull set of G contains at least one vertex of S.

3. Hull number of \boldsymbol{P}_{5}-free triangle-free graphs

In this section, we present a linear-time algorithm to compute $h n(G)$, for any P_{5}-free triangle-free graph G. To prove the correctness of this algorithm, we need to recall some definitions and previous results:

Definition 1. Given a graph $G=(V, E)$, we say that $S \subseteq V$ is a dominating set if every vertex $v \in V \backslash S$ has a neighbor in S.
It is well known that:
Theorem 1 ([12]). G is a connected P_{5}-free graph if, and only if, for every induced subgraph $H \subseteq G$ either $V(H)$ contains a dominating C_{5} or a dominating clique.

As a consequence, we have that:
Corollary 1. If G is a connected P_{5}-free bipartite graph, then there exists a dominating edge in G.
Theorem 2. The hull number of a P_{5}-free bipartite graph $G=(A \cup B, E)$ can be computed in linear time.
Proof. By Corollary 1, G has at least one dominating edge. Observe that the dominating edges of a bipartite graph can be found in linear time by computing the degree of each vertex and then considering the sum of the degrees of the endpoints of each edge. For a dominating edge, this sum is equal to the number of vertices.

https://daneshyari.com/en/article/419213

Download Persian Version:

https://daneshyari.com/article/419213

Daneshyari.com

[^0]: th This work was partly supported by ANR Blanc AGAPE ANR-09-BLAN-0159, by PRONEM/FUNCAP (PRN 0040-00040.01.00/10), by the INRIA/FUNCAP exchange program and by CAPES/Brazil (0483-09-5).

 * Corresponding author at: COATI Project, I3S (CNRS \& UNS) and INRIA, INRIA Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902, Sophia Antipolis Cedex, France.

 E-mail addresses: julio@mat.ufc.br (J. Araujo), gmorel@benomad.com (G. Morel), leonardo.sampaio@uece.br (L. Sampaio), ronan.soares@ufc.br (R. Soares), valentin.weber@amadeus.com (V. Weber).
 http://dx.doi.org/10.1016/j.dam.2015.03.019
 0166-218X/© 2015 Elsevier B.V. All rights reserved.

