Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Hull number: P_5 -free graphs and reduction rules*

I. Araujo^{a,b,c,*}, G. Morel^a, L. Sampaio^e, R. Soares^{a,b}, V. Weber^{d,f}

^a COATI Project, I3S (CNRS & UNS) and INRIA, INRIA Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex, France

^b ParGO Research Group, Universidade Federal do Ceará, Campus do Pici, Bloco 910, 60455-760, Fortaleza, Ceará, Brazil

^c Departamento de Matemática, Universidade Federal do Ceará, Campus do Pici, Bloco 914, 60455-760, Fortaleza, Ceará, Brazil

^d Grenoble-INP / UIF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, F-38031, France

e Universidade Estadual do Ceará (UECE) - Fortaleza, CE, Brazil

^f Amadeus S.A.S, 485 Route du Pin Montard, 06560 Sophia Antipolis, France

ARTICLE INFO

Article history: Received 10 January 2014 Accepted 30 March 2015 Available online 9 September 2015

Keywords: Graph convexity Hull number Geodesic convexity P_5 -free graphs Lexicographic product Parameterized complexity Neighborhood diversity

ABSTRACT

In this paper, we study the (geodesic) hull number of graphs. For any two vertices $u, v \in V$ of a connected undirected graph G = (V, E), the closed interval I[u, v] of u and v is the set of vertices that belong to some shortest (u, v)-path. For any $S \subseteq V$, let $I[S] = \bigcup_{u,v \in S} I[u, v]$. A subset $S \subseteq V$ is (geodesically) convex if I[S] = S. Given a subset $S \subseteq V$, the convex hull $I_h[S]$ of S is the smallest convex set that contains S. We say that S is a hull set of G if $I_h[S] = V$. The size of a minimum hull set of G is the hull number of G, denoted by hn(G).

First, we show a polynomial-time algorithm to compute the hull number of any P₅-free triangle-free graph. Then, we present four reduction rules based on vertices with the same neighborhood. We use these reduction rules to propose a fixed parameter tractable algorithm to compute the hull number of any graph G, where the parameter can be the size of a vertex cover of G or, more generally, its neighborhood diversity, and we also use these reductions to characterize the hull number of the lexicographic product of any two graphs. © 2015 Elsevier B.V. All rights reserved.

1. Introduction

All graphs in this work are undirected, simple and loop-less. Given a connected graph G = (V, E), the closed interval I[u, v] of any two vertices $u, v \in V$ is the set of vertices that belong to some u-v geodesic of G, i.e. some shortest (u, v)-path. For any $S \subseteq V$, let $I[S] = \bigcup_{u,v \in S} I[u, v]$. A subset $S \subseteq V$ is (geodesically) convex if I[S] = S. Given a subset $S \subseteq V$, the convex hull $I_h[S]$ of S is the smallest convex set that contains S. We say that a vertex v is generated by a set of vertices S if $v \in I_h[S]$. We say that S is a hull set of G if $I_h[S] = V$. The size of a minimum hull set of G is the hull number of G, denoted by hn(G) [8].

It is known that the problem of computing hn(G) is NP-hard for bipartite graphs [3]. Several bounds on the hull number of triangle-free graphs are presented in [7]. In [6], the authors show, among other results, that the hull number of any P_4 -free graph, i.e. any graph without induced path with four vertices, can be computed in polynomial time. In Section 3, we show a linear-time algorithm to compute the hull number of any *P*₅-free triangle-free graph.

http://dx.doi.org/10.1016/j.dam.2015.03.019 0166-218X/© 2015 Elsevier B.V. All rights reserved.

CrossMark

[🌣] This work was partly supported by ANR Blanc AGAPE ANR-09-BLAN-0159, by PRONEM/FUNCAP (PRN 0040-00040.01.00/10), by the INRIA/FUNCAP exchange program and by CAPES/Brazil (0483-09-5).

^{*} Corresponding author at: COATI Project, 13S (CNRS & UNS) and INRIA, INRIA Sophia Antipolis, 2004 route des Lucioles, BP 93, 06902, Sophia Antipolis Cedex, France.

E-mail addresses: julio@mat.ufc.br (J. Araujo), gmorel@benomad.com (G. Morel), leonardo.sampaio@uece.br (L. Sampaio), ronan.soares@ufc.br (R. Soares), valentin.weber@amadeus.com (V. Weber).

In Section 4, we show four reduction rules to obtain, from a graph *G*, another graph G^* that has one vertex less than *G* and which satisfies either $hn(G) = hn(G^*)$ or $hn(G) = hn(G^*) + 1$, according to the used rule. We then first use these rules to obtain a fixed parameter tractable (FPT) algorithm, where the parameter is the neighborhood diversity of the input graph. For definitions on Parameterized Complexity we refer to [9]. Given a graph *G* and vertices $u, v \in V(G)$, we say that u and v are twins (a.k.a. of the same type) if $N(v) \setminus \{u\} = N(u) \setminus \{v\}$. The neighborhood diversity of a graph is k, if its vertex set can be partitioned into k sets S_1, \ldots, S_k , such that any pair of vertices $u, v \in S_i$ are twins. This parameter was proposed in [11], motivated by the fact that a graph of bounded vertex cover also has bounded neighborhood diversity, and therefore the later parameter can be used to obtain more general results. To see that a graph of bounded vertex cover has bounded neighborhood diversity, let *G* be a graph that has a minimal vertex cover $S \subseteq V(G)$ of size k, and let $I = V(G) \setminus S$. Since *S* is a vertex cover, *I* is an independent set. Therefore, the neighborhood of any vertex in *I* is contained in *S*, and since there are 2^k distinct subsets of *S*, there exists a partition by vertices of the same type of *I* with at most 2^k parts. The vertices in *S* may be partitioned in *k* sets of singletons, what gives a partition of the vertices of the graph into $k + 2^k$ sets of twin vertices. Then, the neighborhood diversity of the graph is at most $k + 2^k$. Many problems have been shown to be FPT when the parameter is the neighborhood diversity [10].

Finally, we use these rules to characterize the hull number of the lexicographic product of any two graphs. Given two graphs *G* and *H*, the *lexicographic product* $G \circ H$ is the graph whose vertex set is $V(G \circ H) = V(G) \times V(H)$ and such that two vertices (g_1, h_1) and (g_2, h_2) are adjacent if, and only if, either $g_1g_2 \in E(G)$ or we have that both $g_1 = g_2$ and $h_1h_2 \in E(G)$.

It is known in the literature a characterization of the (geodesic) convex sets in the lexicographic product of two graphs [1] and a study of the pre-hull number for this product [13]. There are also some results concerning the hull number of the Cartesian and strong products of graphs [4,5].

2. Preliminaries

Let us recall some definitions and lemmas that we use in the sequel.

We denote by $N_G(v)$ (or simply N(v)) the neighborhood of a vertex. A vertex v is simplicial (resp. universal) if N(v) is a clique (resp. is equal to $V(G) \setminus \{v\}$). Let $d_G(u, v)$ denote the distance between u and v, i.e. the length of a shortest (u, v)-path. A subgraph $H \subseteq G$ is isometric if, for each $u, v \in V(H)$, $d_H(u, v) = d_G(u, v)$. A P_k (resp. C_k) in a graph G denotes an induced path (resp. cycle) on k vertices. Given a graph H, we say that a graph G is H-free if G does not contain H as an induced subgraph. Moreover, we consider that all the graphs in this work are connected. Indeed, if a graph G is not connected, its hull number can be computed by the sum of the hull numbers of its connected components [6].

Lemma 1 ([8]). For any hull set S of a graph G, S contains all simplicial vertices of G.

Lemma 2 ([6]). Let G be a graph which is not complete. No hull set of G with cardinality hn(G) contains a universal vertex.

Lemma 3 ([6]). Let G be a graph, H be an isometric subgraph of G and S be any hull set of H. Then, the convex hull of S in G contains V(H).

Lemma 4 ([6]). Let G be a graph and S a proper and non-empty subset of V(G). If $V(G) \setminus S$ is convex, then every hull set of G contains at least one vertex of S.

3. Hull number of P₅-free triangle-free graphs

In this section, we present a linear-time algorithm to compute hn(G), for any P_5 -free triangle-free graph G. To prove the correctness of this algorithm, we need to recall some definitions and previous results:

Definition 1. Given a graph G = (V, E), we say that $S \subseteq V$ is a dominating set if every vertex $v \in V \setminus S$ has a neighbor in S.

It is well known that:

Theorem 1 ([12]). *G* is a connected P_5 -free graph if, and only if, for every induced subgraph $H \subseteq G$ either V(H) contains a dominating C_5 or a dominating clique.

As a consequence, we have that:

Corollary 1. If G is a connected P_5 -free bipartite graph, then there exists a dominating edge in G.

Theorem 2. The hull number of a P_5 -free bipartite graph $G = (A \cup B, E)$ can be computed in linear time.

Proof. By Corollary 1, *G* has at least one dominating edge. Observe that the dominating edges of a bipartite graph can be found in linear time by computing the degree of each vertex and then considering the sum of the degrees of the endpoints of each edge. For a dominating edge, this sum is equal to the number of vertices.

Download English Version:

https://daneshyari.com/en/article/419213

Download Persian Version:

https://daneshyari.com/article/419213

Daneshyari.com