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a b s t r a c t

Let G be a graph of order n. A dominating set of G is a subset of vertices of G, say S, such that
every vertex in V (G) \ S is adjacent to at least one vertex of S. The domination polynomial
of G is the polynomial D(G, x) =

n
i=1 d(G, i)xi, where d(G, i) is the number of dominating

sets of G of size i. A root of D(G, x) is called a domination root of G. Let δ = δ(G) be
the minimum degree of vertices of G. We prove that all roots of D(G, x) lies in the set
{z : |z + 1| ≤

δ+1√2n − 1}. We show that D(G, x) has at least δ − 1 non-real roots. In
particular, we prove that if all roots of D(G, x) are real, then δ = 1.We construct an infinite
family of graphs such that all roots of their polynomials are real. Motivated by a conjecture
(Akbari, et al. 2010) which states that every integer root of D(G, x) is −2 or 0, we prove
that if δ ≥

2n
3 − 1, then every integer root of D(G, x) is −2 or 0. Also we prove that the

conjecture is valid for trees and unicyclic graphs. Finally we characterize all graphs that
their domination roots are integer.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper wewill consider only simple graphs. Let G = (V , E) be a graph. The order of G denotes the number
of vertices ofG. For two graphsG1 = (V1, E1) andG2 = (V2, E2), the disjoint union ofG1 andG2 denoted byG1+G2 is the graph
with vertex set V1 ∪V2 and edge set E1 ∪ E2. The graph rG denotes the disjoint union of r copies of G. For every vertex v ∈ V ,
the open neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E} and the closed neighborhood is the set N[v] = N(v) ∪ {v}. For
a set S ⊆ V , the open neighborhood is N(S) =


v∈S N(v) and the closed neighborhood is N[S] = N(S) ∪ S. A set S ⊆ V is a

dominating set of G if N[S] = V , or equivalently, every vertex in V \ S is adjacent to at least one vertex of S. The domination
number γ (G) is the minimum cardinality of a dominating set in G. For a detailed treatment of this parameter, the reader is
referred to [16]. We denote the complete graph of order n, the complete bipartite graph with part sizes m, n, the cycle of
order n, and the path of order n, by Kn, Km,n, Cn, and Pn, respectively. Also K1,n is called a star. For every vertex v ∈ V (G),
the degree of v is the number of edges incident with v. By δ(G) and ∆(G) we mean the minimum and maximum degree of
vertices of G, respectively.

Let D(G, i) be the family of all dominating sets of a graph Gwith cardinality i and let d(G, i) = |D(G, i)|. The domination
polynomial D(G, x) ofGwas defined by Alikhani and Peng, see [3–5], asD(G, x) =

|V |

i=1 d(G, i)xi. For example the domination
polynomial of the complete graph on n vertices, Kn, is D(Kn, x) = (x + 1)n − 1. Every root of D(G, x) is called a domination
root of G. We denote the set of all roots of D(G, x) by Z(D(G, x)). We note that d(G, n) = 1 and the degree of the polynomial
D(G, x) is n. Since all coefficients ofD(G, x) are positive, every real root ofD(G, x) is non-positive. Also zero is a root ofD(G, x)
for every graph G.
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Let A ⊆ B ⊆ V . Define DA,B(G, i) as follows:

DA,B(G, i) = {S ∈ D(G, i) : S ∩ B = A}.

Let dA,B(G, i) = |DA,B(G, i)| and define DA,B(G, x) =
|V |

i=1 dA,B(G, i)xi [1].
The corona of two graphs G1 and G2, as defined by Frucht and Harary in [14], is the graph G = G1 ◦ G2 formed from one

copy of G1 and |V (G1)| copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of G2. The corona
G◦K1, in particular, is the graph constructed from a copy of G, where for each vertex v ∈ V (G), a new vertex v′ and a pendant
edge vv′ are added.

The roots of graph polynomials reflect some important information about the structure of graphs. There are many
papers on the location of the roots of graph polynomials such as chromatic polynomial, matching polynomial, independence
polynomial and characteristic polynomial [21]. In [24] Thomassen showed that the chromatic polynomial has no root in the
intervals (−∞, 0), (0, 1) and (1, 32

27 ]. Moreover he proved that the roots of the chromatic polynomials are dense in the
interval [ 3227 , ∞). He also showed that if the chromatic polynomial of a graph has a non-integer root less than or equal to
1.29559 . . ., then the graph has no Hamiltonian path [25]. In [9] Brown, Hickman, and Nowakowski proved that the real
roots of the independence polynomials are dense in the interval (−∞, 0], while the complex roots are dense in the complex
plane. There are many results on the roots of the matching polynomials as well. In [17] it was proved that all roots of the
matching polynomials are real. Also it was shown that if a graph has a Hamiltonian path, then all roots of its matching
polynomial are simple (see Theorem 4.5 of [15]). It is well known that all roots of the characteristic polynomials are real.
For more details on the characteristic polynomials see [12]. There are also many bounds for the roots of these polynomials
in terms of other parameters of the graphs. For instance, in [23] Sokal proved that for every graph G, the absolute value of
any root of the chromatic polynomial of G is at most 8∆(G) (∆(G) is the maximum degree of G).

In [11] it was proved that all roots of edge cover polynomials lie in the following set:
z ∈ C : |z| <

(2 +
√
3)2

1 +
√
3

≃ 5.099


.

Averbouch, Godlin, and Makowsky [7] introduced a new graph polynomial, the edge elimination polynomial that is denoted
by ξ(G, x, y, z), for every graph G, which generalizes some well known graph polynomials such as chromatic polynomials,
matching polynomials, independence polynomials, Tutte polynomials and edge cover polynomials.

In this paper we study the location of domination roots. Related to the roots of domination polynomials there are a
few papers. See [1,2,10] for more details. Recently in [10] Brown and Tufts studied the location of the roots of domination
polynomials for some families of graphs such as bipartite cocktail party graphs and complete bipartite graphs. In particular,
they showed that the set of all domination roots is dense in the complex plane.

The structure of this paper is the following. In the next section, we state a formula for computing the domination
polynomials of graphs and introduce an upper bound for the absolute value of the domination roots. Also we study the
real domination roots and those graphs such that all domination roots are real. We construct an infinite family of graphs in
which all domination roots are real. Finally in the last section we investigate integer domination roots and characterize all
graphs that all their domination roots are integer.

2. Locations of the roots of domination polynomials

In this section we investigate about the location of the roots of domination polynomial of graphs. First we introduce a
formula to compute the domination polynomial of graphs. This formula also has been proved in [13] by a different method.

Lemma 1. Let G be a graph of order n. Then D(G, x) =


S⊆V (G)(−1)|S|(x + 1)n−|N[S]|.

Proof. We note that (x+1)n is the generating function of the sequence of the number of subsets of V (G). On the other hand
for any S ⊆ V (G), (x + 1)n−|N[S]| is the generating function of the sequence of the subsets of V (G) which has no neighbor in
S. Now the desired statement follows from the inclusion–exclusion principle. �

As a consequence of Lemma 1 we indicate the location of the roots of domination polynomials.

Theorem 1. Let G be a graph of order n. Let δ = δ(G). Then all roots of D(G, x) lie in the circle with center (−1, 0) and the
radius δ+1√2n − 1; that is, if D(G, z) = 0, then |z + 1| ≤

δ+1√2n − 1.

Proof. Let y = z + 1. Using Lemma 1 one has D(G, z) =


S⊆V (G)(−1)|S|yn−|N[S]|. Let f (y) =


∅≠S⊆V (G)(−1)|S|yn−|N[S]|.
We can rewrite D(G, z) = yn − f (y). If S is a non-empty subset of V (G), then |N[S]| ≥ δ + 1. Suppose that |y| ≥ 1. Then
|y|n−|N[S]|

≤ |y|n−δ−1, for every ∅ ≠ S ⊆ V (G). Therefore |f (y)| ≤ (2n
− 1)|y|n−δ−1.

Now, let |y| > δ+1√2n − 1. Then |y| ≥ 1. So |f (y)| ≤ (2n
−1)|y|n−δ−1 < |y|n. This shows that |yn− f (y)| > 0. Equivalently

|D(G, z)| > 0. This completes the proof. �
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