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a b s t r a c t

In this short note the many-to-many stable matching and stable allocation problems
are revisited. A confusion concerning preferences, efficiency, monotonicity and strategy-
proofness is clarified without rewriting new proofs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This note is devoted to clarifying issues surrounding the inaccuracy of some results in Baïou and Balinski [1] published
in 2000. In fact Theorems 5, 6 and 7 in [1] are incorrect as stated, but those errors were put right in a paper by Baïou and
Balinski [2] published in 2007.

Hatfield et al. [3] give a counter example for Theorems 5, 6 and 7 of [1] in the spirit of an example already given in [2]
that explain when analogs of those theorems hold for a more general problem. Moreover, Theorems 5, 6 and 7 are correct
for the large class of instances in which the matchings fill the quota (a reasonable condition). Only adjoining this condition
to the statements of these theorems is sufficient; not a word need be changed in their proofs in [1].

Section 2 introduces themany-to-many stablematching problemwithmax–min preferences studied in [1] and gives the
counter example of [3]. Section 3 introduces the stable allocations problem with the more restricted generalized max–min
preferences studied in [2]. The example given in [2] that motivated the use of generalized max–min preferences is given
once again. It shows clearly why max–min preferences fail in general. The discussion is extended to max–min preferences
for stable allocations.

2. Max–min preferences in many-to-many matchings

To simplify comparisons, the notations that used in [1] and [2] are used (except that i’s are used for rows and not r ’s, j’s
for columns and not c ’s).

There are two distinct finite sets of agents, the row-agents I and the column-agents J . Each agent has a strict preference
order over those of the opposite set whom she or he considers to be acceptable. A graph Γ is defined as follows. The nodes
are the pairs (i, j), i ∈ I and j ∈ J , for which i is acceptable to j and j to i. The nodes are taken to be located on a I × J grid. The
(directed) arcs of Γ , or ordered pairs of nodes, are of two types : a horizontal arc


(i, j), (i, j′)


expresses agent i’s preference

for j′ over j (sometimes written j′ >i j), symmetrically a vertical arc

(i, j), (i′, j)


expresses agent j’s preference for i′ over i

(sometimes written i′ >j i). Arcs implied by transitivity are omitted.
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Fig. 1. Three problems Γ1 , Γ2 and Γ3 each with two row-agents i1 and i2 and two column-agents j1 and j2 with their respective quotas. In black the unique
stable matching µJ . Γ2 is an improvement of Γ1 for j1 and Γ3 is an alternate instance of Γ2 for j1 .

A many-to-many stable matching problem is specified by a triple (Γ , p, q): a directed graph Γ specifying agents’
preferences; the row-agents’ quotas p, pi for i ∈ I , the total number of agents of the opposite set with which he may be
matched; and the column agents’ quotas q, qj for j ∈ J , the total number of agents of the opposite set with which she may
be matched.

A matching in (Γ , p, q) is a set of nodes of Γ at most pi in row i for each i ∈ I and at most pj in column j for each j ∈ J . A
matching µ is stable if (i, j) ∉ µ implies that at least one of the two agents i and j is better-off in µ: either i is matched with
pi column-agents he prefers to j or j is matched with qj row-agents she prefers to i.

Given a matching µ, µ(i) is the set of column-agents matched by µ to the row-agent i. The set µ(j) is defined similarly
for the column-agent j. Let min(µ(i)) be the least preferred column-agent of i among those in µ(i) (and min(µ(j)) similarly
for a column-agent j).

A matching mechanism φ is a function that selects exactly one stable matching.

• Max–min preferences. Given two arbitrary matchings µ and µ∗, the max–min preference compares µ(i) and µ∗(i) for a
row-agent i (similarly for a column-agent) as follows:

µ ≥i µ
∗ if µ(i) = µ∗(i) or |µ(i)| ≥ |µ∗(i)| and min(µ(i)) >i min(µ∗(i)).

Take µ >i µ
∗ to mean µ ≥i µ

∗ and µ(i) ≠ µ∗(i).
• Row-efficiency. A stable matching µ∗ is row-efficient if there exists no matching µ (stable or not) for which µ >i µ

∗ for
each i ∈ I .

• Row-monotonicity. For (Γ , p, q), the instance (Γ i∗ , p, q) is an improved instance for the row-agent i∗ if the preferences
are the same except that row-agent i∗ may have improved in the rankings of one or more column-agents. A matching
mechanism φ is row-monotone if φ(Γ i∗ , p, q) ≥i∗ φ(Γ , p, q) whenever (Γ i∗ , p, q) is an improved instance for i∗.

• Row-strategy-proofness. For (Γ , p, q), the instance (Γ ′, p′, q) is an alternate instance for I ′ ⊂ I if the two instances are
identical except for row-agents I ′ who announce altered preferences and/or altered quotas. A mechanism φ is row-
strategy-proof if, when (Γ ′, p′, q) is a matching it is not true that φ(Γ ′, p′, q) >i φ(Γ , p, q) for all i ∈ I ′.

Let µI be the optimal stable matching for the row-agents: there exists no stable matching µ for which µ >i µI for every
i ∈ I (µJ is defined similarly).

Theorems 5, 6 and 7 in [1] state that µI (µJ ) is the unique row(column)-efficient, row(column)-monotone and
row(column)-strategy proof matching mechanism (under the max–min preferences). In [3] the authors give the following
counter example (see Fig. 1):

It is straightforward to see that µJ is neither column-monotone nor column-strategy-proof in this example. Moreover, it
is not column-efficient since in Γ2, {(i1, j1), (i2, j2)} = µ >j µJ for j = j1, j2.

In this example the column-agent j1 does not fill her quota inµJ . This is the unique reasonwhyµJ is not column-efficient,
not column-monotone and not column-strategy-proof.

Theorem 1. If |µI(i)| = pi for each i ∈ I , then µI is a row-efficient matching mechanism.

Proof. Exactly the same proof of Theorem 5 in [1]. �

Theorem 2. If |µI(i)| = pi for each i ∈ I , then µI is the unique row-monotone matching mechanism.

Proof. Exactly the same proof of Theorem 6 in [1]. �

Theorem 3. f |µI(i)| = pi for each i ∈ I , then µI is the unique row-strategy-proof matching mechanism.

Proof. Exactly the same proof of Theorem 7 in [1]. �

We do not have the unicity in Theorem 1, this has been observed in [3] for an analogue theorem for stable allocations [2].
We do not need a long expository to explain it. This may happen for instance when for the row-agent i his or her preferred
column-agent is j and vice versa. This means that in the corresponding graph Γ the node (i, j) has no successor in its row
and its column.
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