Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note

A note on many-to-many matchings and stable allocations

Mourad Baïou

CNRS, and Université Clermont II, Campus Universitaire des Cézeaux 1 rue de la Chebarde TSA 60125 CS 60026, 63178 Aubiere Cedex, France

ARTICLE INFO

ABSTRACT

Article history: Received 20 April 2015 Accepted 9 August 2015 Available online 26 September 2015

Keywords: Stable matching Many-to-many matching Mechanism design

1. Introduction

This note is devoted to clarifying issues surrounding the inaccuracy of some results in Baïou and Balinski [1] published in 2000. In fact Theorems 5, 6 and 7 in [1] are incorrect as stated, but those errors were put right in a paper by Baïou and Balinski [2] published in 2007.

proofness is clarified without rewriting new proofs.

In this short note the many-to-many stable matching and stable allocation problems

are revisited. A confusion concerning preferences, efficiency, monotonicity and strategy-

Hatfield et al. [3] give a counter example for Theorems 5, 6 and 7 of [1] in the spirit of an example already given in [2] that explain when analogs of those theorems hold for a more general problem. Moreover, Theorems 5, 6 and 7 are correct for the large class of instances in which the matchings fill the quota (a reasonable condition). Only adjoining this condition to the statements of these theorems is sufficient; not a word need be changed in their proofs in [1].

Section 2 introduces the many-to-many stable matching problem with max-min preferences studied in [1] and gives the counter example of [3]. Section 3 introduces the stable allocations problem with the more restricted generalized max-min preferences studied in [2]. The example given in [2] that motivated the use of generalized max-min preferences is given once again. It shows clearly why max-min preferences fail in general. The discussion is extended to max-min preferences for stable allocations.

2. Max-min preferences in many-to-many matchings

To simplify comparisons, the notations that used in [1] and [2] are used (except that *i*'s are used for rows and not *r*'s, *j*'s for columns and not *c*'s).

There are two distinct finite sets of agents, the *row-agents I* and the *column-agents J*. Each agent has a strict preference order over those of the opposite set whom she or he considers to be acceptable. A graph Γ is defined as follows. The *nodes* are the pairs $(i, j), i \in I$ and $j \in J$, for which *i* is acceptable to *j* and *j* to *i*. The nodes are taken to be located on a $I \times J$ grid. The (directed) *arcs* of Γ , or ordered pairs of nodes, are of two types : a horizontal arc ((i, j), (i, j')) expresses agent *i*'s preference for *j*' over *j* (sometimes written $j' >_i j$), symmetrically a vertical arc ((i, j), (i', j)) expresses agent *j*'s preference for *i*' over *i* (sometimes written $i' >_i i$). Arcs implied by transitivity are omitted.

http://dx.doi.org/10.1016/j.dam.2015.08.013 0166-218X/© 2015 Elsevier B.V. All rights reserved.

© 2015 Elsevier B.V. All rights reserved.

E-mail address: baiou@isima.fr.

Fig. 1. Three problems Γ_1 , Γ_2 and Γ_3 each with two row-agents i_1 and i_2 and two column-agents j_1 and j_2 with their respective quotas. In black the unique stable matching μ_j . Γ_2 is an improvement of Γ_1 for j_1 and Γ_3 is an alternate instance of Γ_2 for j_1 .

A many-to-many stable matching problem is specified by a triple (Γ, p, q) : a directed graph Γ specifying agents' preferences; the row-agents' quotas p, p_i for $i \in I$, the total number of agents of the opposite set with which he may be matched; and the column agents' quotas q, q_j for $j \in J$, the total number of agents of the opposite set with which she may be matched.

A matching in (Γ, p, q) is a set of nodes of Γ at most p_i in row i for each $i \in I$ and at most p_j in column j for each $j \in J$. A matching μ is stable if $(i, j) \notin \mu$ implies that at least one of the two agents i and j is better-off in μ : either i is matched with p_i column-agents he prefers to j or j is matched with q_i row-agents she prefers to i.

Given a matching μ , $\mu(i)$ is the set of column-agents matched by μ to the row-agent *i*. The set $\mu(j)$ is defined similarly for the column-agent *j*. Let min($\mu(i)$) be the least preferred column-agent of *i* among those in $\mu(i)$ (and min($\mu(j)$) similarly for a column-agent *j*).

A matching mechanism ϕ is a function that selects exactly one stable matching.

• *Max-min preferences.* Given two arbitrary matchings μ and μ^* , the max-min preference compares $\mu(i)$ and $\mu^*(i)$ for a row-agent *i* (similarly for a column-agent) as follows:

 $\mu \ge_i \mu^*$ if $\mu(i) = \mu^*(i)$ or $|\mu(i)| \ge |\mu^*(i)|$ and $\min(\mu(i)) >_i \min(\mu^*(i))$. Take $\mu >_i \mu^*$ to mean $\mu \ge_i \mu^*$ and $\mu(i) \ne \mu^*(i)$.

- *Row-efficiency*. A stable matching μ^* is *row-efficient* if there exists no matching μ (stable or not) for which $\mu >_i \mu^*$ for each $i \in I$.
- *Row-monotonicity.* For (Γ, p, q), the instance (Γ^{i*}, p, q) is an *improved instance for the row-agent i** if the preferences are the same except that row-agent i* may have improved in the rankings of one or more column-agents. A matching mechanism φ is *row-monotone* if φ(Γ^{i*}, p, q) ≥_{i*} φ(Γ, p, q) whenever (Γ^{i*}, p, q) is an improved instance for *i**. *Row-strategy-proofness.* For (Γ, p, q), the instance (Γ', p', q) is an *alternate instance for I'* ⊂ I if the two instances are
- *Row-strategy-proofness.* For (Γ, p, q) , the instance (Γ', p', q) is an *alternate instance for* $I' \subset I$ if the two instances are identical except for row-agents I' who announce altered preferences and/or altered quotas. A mechanism ϕ is *row-strategy-proof* if, when (Γ', p', q) is a matching it is not true that $\phi(\Gamma', p', q) >_i \phi(\Gamma, p, q)$ for all $i \in I'$.

Let μ_I be the *optimal stable matching for the row-agents*: there exists no stable matching μ for which $\mu >_i \mu_I$ for every $i \in I$ (μ_I is defined similarly).

Theorems 5, 6 and 7 in [1] state that μ_I (μ_J) is the unique row(column)-efficient, row(column)-monotone and row(column)-strategy proof matching mechanism (under the max–min preferences). In [3] the authors give the following counter example (see Fig. 1):

It is straightforward to see that μ_j is neither column-monotone nor column-strategy-proof in this example. Moreover, it is not column-efficient since in Γ_2 , $\{(i_1, j_1), (i_2, j_2)\} = \mu >_j \mu_j$ for $j = j_1, j_2$.

In this example the column-agent j_1 does not fill her quota in μ_J . This is the unique reason why μ_J is not column-efficient, not column-monotone and not column-strategy-proof.

Theorem 1. If $|\mu_1(i)| = p_i$ for each $i \in I$, then μ_1 is a row-efficient matching mechanism.

Proof. Exactly the same proof of Theorem 5 in [1]. \Box

Theorem 2. If $|\mu_I(i)| = p_i$ for each $i \in I$, then μ_I is the unique row-monotone matching mechanism.

Proof. Exactly the same proof of Theorem 6 in [1]. \Box

Theorem 3. $f |\mu_I(i)| = p_i$ for each $i \in I$, then μ_I is the unique row-strategy-proof matching mechanism.

Proof. Exactly the same proof of Theorem 7 in [1]. \Box

We do not have the unicity in Theorem 1, this has been observed in [3] for an analogue theorem for stable allocations [2]. We do not need a long expository to explain it. This may happen for instance when for the row-agent *i* his or her preferred column-agent is *j* and vice versa. This means that in the corresponding graph Γ the node (i, j) has no successor in its row and its column.

Download English Version:

https://daneshyari.com/en/article/419267

Download Persian Version:

https://daneshyari.com/article/419267

Daneshyari.com