中医浆态

Journal of Traditional Chinese Medicine

Online Submissions: http://www.journaltcm.com info@journaltcm.com

JTCM

J Tradit Chin Med 2016 June 15; 36(3): 332-339 ISSN 0255-2922

EXPERIMENTAL STUDY

© 2016 JTCM. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Algal oligosaccharides ameliorate osteoporosis *via* up-regulation of parathyroid hormone 1-84 and vascular endothelial growth factor

Wang Li, Wang Haiya, Fang Ningyuan

Wang Li, Wang Haiya, Fang Ningyuan, Geriatric Department, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China

Correspondence to: Prof. Wang Haiya, Geriatric Department, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200001, China. haiyawsh@163.com Telephone: +86-21-53882414; +86-13916006739

Accepted: August 20, 2015

Abstract

OBJECTIVE: To determine whether algal oligosaccharide affects the levels of parathyroid hormone 1-84 (PTH1-84) and vascular endothelial growth factor (VEGF).

METHODS: An osteoporosis rat model was established *via* bilateral ovariectomy. The model rats were fed algal oligosaccharides (molecular weights: 600-1, 200 Da) for 4 months. Bone mineral density (BMD) was then measured. MG-63 human osteoblastic cells were treated with algal oligosaccharides. The expression of PTH1-84 and VEGF was then examined. Oligosaccharide-treated cells were transfected with PTH1-84 short hairpin RNA (shR-NA), VEGF shRNA, and PTH1-84-VEGF small interfering RNA (siRNA). The growth rates were then compared between transfected and non-transfected cells.

RESULTS: Algal oligosaccharides increased the BMD of the osteoporosis rat model compared with untreated controls (P < 0.05). When MG-63 cells were treated with algal oligosaccharides, the growth rate increased by 25% compared with the control group at day 3 (P < 0.05). In addition, the expression of PTH84 and VEGF was enhanced. Con-

versely, when the cells were transfected with PTH84 shRNA, VEGF shRNA, or PTH1-84-VEGF siR-NA, the growth rate was decreased by 17%, 35% and 70%, respectively, compared with controls at day 3 (P < 0.05).

CONCLUSION: Algal oligosaccharides ameliorate osteoporosis *via* up-regulation of PTH1-84 and VEGF. Algal oligosaccharides should be developed as a potential drug for osteoporosis treatment.

© 2016 JTCM. All rights reserved.

Key words: Osteoporosis; Bone density; Sargassum; Oligosaccharides; Parathyroid hormone; Vascular endothelial growth factor A; MG-63 human osteoblastic cells

INTRODUCTION

Over 200 million people suffer from osteoporosis worldwide. The prevalence of osteoporosis is still increasing, especially in the elderly population.¹ Osteoporosis can increase the possibility of fragility fractures² that lead to morbidity, mortality, and decrease quality of life. Alendronate sodium,³ risedronate sodium,⁴ zoledronic acid,⁵ bisphosphonates,⁶ calcitonin,⁷ denosumab,⁸ and estrogen⁹ are drugs for the treatment of osteoporosis. However, all of these drugs have unwanted adverse effects or high costs.¹⁰⁻¹² Therefore, it is critical to explore low-cost medicine with few side-effects for osteoporosis treatment.

Algal oligosaccharides are an abundant resource and have attracted increasing attention for their active components and various therapeutic functions.¹³ More importantly, algal oligosaccharides are safe without toxicity or side-effects.¹⁴ Algal extracts have been reported to increase bone density and ameliorate osteoporosis. The

main components of the extracts are saccharides^{15,16} that can be digested into pharmaceutical oligosaccharides. Therefore, algal oligosaccharides may be a potential drug for the treatment of osteoporosis, but the molecular mechanism remains unknown.

Parathyroid hormone (PTH), an important modulator of bone homeostasis,¹⁷ is linked to the development of stress fractures in bone. Human PTH1-84 is a member of the parathyroid hormone family, which enhances calcium reabsorption and promotes bone formation.¹⁸ Comparatively, vascular endothelial growth factor (VEGF), a growth factor for endothelial cells, has been shown to play major roles in bone health and is associated with bone mineral density (BMD).¹⁹ On the other hand, PTH1-84 has been reported to increase endothelium-dependent vasodilation of the artery via enhanced nitric oxide production and is partially dependent on VEGF signaling.²⁰ Therefore, we determined whether algal oligosaccharides can ameliorate osteoporosis *via* regulation of PTH1-84 and VEGF.

MATERIALS AND METHODS

Reagents and cell culture

Algal oligosaccharides mainly consisting of trimer to hexamer oligosaccharides (molecular weights: 600-1, 200 Da) were chosen according to a previous report.²¹ Algal oligosaccharides were purchased from Qingdao BZ Oligo Biotech Co., Ltd. (Qingdao, China). MG-63 human osteoblastic cells (Cell Bank, Shanghai Institutes for Biological Sciences, Shanghai, China) were grown in Roswell Park Memorial Institute 1640 medium with 10% heat-inactivated fetal bovine serum (Shanghai ExCell Biology, Shanghai, China). Cells were cultured at 37 °C in a CO₂ incubator with saturated humidity. The cells were randomly assigned to the experimental group (treated with 5 µg/mL algal oligosaccharides for 3 days) or control group (untreated).

Toxicity testing

The toxicity of algal oligosaccharides was tested by the viability of MG-63 cells. The viability of MG-63 cells was measured by trypan blue uptake and [3H]thymidine incorporation after the cells were treated with various concentrations of algal oligosaccharides (0, 5, 10, 15, 20, 25, 30, 35, and 40 µg/mL) for 24 h. The number of viable cells was counted by trypan blue exclusion in two microscopic fields. Results are shown as the percentage of viable cells. For [³H]thymidine incorporation assays, after exposure to various concentrations of algal oligosaccharides, 200 μ L of a cell suspension (1 × 10⁵ cells/mL) was transferred to each well of a 96-well plate (Beijing South Star Paper Product Co., Ltd., Beijing, China). After 24 h, the cells were treated with 1 Ci/well [3H]thymidine (67 Ci/mmol) for 4 h and then collected with an automated sample harvester (Skatron, Sterling, VA, USA), dried, and analyzed in an Aquassure (Packard, Meriden, CT, USA).

Animals and treatments

Healthy 3-month-old female Sprague-Dawley rats [(220 ± 20) g] were obtained from Shanghai Sipprbk Lab. Animals Ltd. (Shanghai, China). All rats were adapted to the environment for 1 week before the start of experiments. The acclimated rats underwent either bilateral laparotomy (sham, n = 12) or bilateral ovariectomy (OVX, n = 24) according to a previous report.²² One month after recovering from surgery, OVX rats were randomly assigned into two groups: OVX treated with the vehicle (OVX, n = 12) and OVX treated with algal oligosaccharides (oral, 5 mg \cdot kg $\cdot^{-1} \cdot$ d⁻¹, n = 12). Treatments were initiated at 1 month after OVX and proceeded for 4 months. The body weights of the rats (in grams) were measured for every 7 days. Before sacrifice, each rat was housed in a metabolic cage without food for 1 day. After laparotomy of anesthetized rats with pentobarbital sodium (30 mg/kg), blood samples were collected by abdominal aorta puncture. Then, serum specimens were collected by centrifugation at 1500 $\times g$ for 20 min. Serum samples were stored at - 20 °C until analysis. Femurs and the fourth lumbar (L4) vertebrae were dissected for measurement of BMD.

BMD measurement

The BMD of L4 vertebrae and right femurs was estimated using dual-energy X-ray absorptiometry (DEXA, GE Healthcare, Seattle, WA, USA). The measurements are expressed as grams of mineral content per cm^2 of bone surface. Scans were performed by the same operator.

Enzyme-linked immunosorbent assay (ELISA)

PTH1-84 and VEGF in serum samples were measured by ELISA. ELISA kits for PTH1-84 (Cat. No. S-1226) and VEGF (Cat. No. KHG0111) were purchased from Bachem Holding AG (Basel, Switzerland) and Life Technologies (Beijing, China).

PTH1-84 and VEGF gene silencing

The pTZU6+1 plasmid was a gift from Shanghai Boya Biological Engineering Technology (Shanghai, China). Small interfering RNA (siRNA) sequences used for PTH1-84 and VEGF gene silencing were as follows: siPTH1-84, sense 5'-TCGA GTAAACCTGGGG-TAGGTGGGGGTTCTGTCTTAACTCGAGGGG-CTTTTTT-3', antisense 5'-CTAGAAAAAAGCCC-CTCGAGTTAAGACAGAACCCCCACCTACCCC-A GGTTTAC-3'; siVEGF, sense 5'-TCGAGCGGAT-CAAACCTCACCAAGGCCAGCAC ATAGGAGA-GATGAGCTTTTTT-3', antisense 5'-CTAGAAAA-AAGCTCATCTCCTCTATGTGCTGGCCTTGTG-AGGTTTGATCCGC-3'. pTZU6+1-shRNA- PTH1-84 and pTZU6+1-shRNA-VEGF plasmids were constructed. To explore the effect of RNA interference of both PTH1-84 and VEGF on MG-63 cells, the pGenesil-2.1 plasmid was purchased from Wuhan Genesil Biotechnology Co., Ltd. (Wuhan, China). FuDownload English Version:

https://daneshyari.com/en/article/4200950

Download Persian Version:

https://daneshyari.com/article/4200950

Daneshyari.com