Case Report

MRI findings of subchondroplasty of the knee: a two-case report

Mika T. Nevalainen a,⁎, Peter F. Sharkey b, Steven B. Cohen b, Johannes B. Roedl a, Adam C. Zoga a, William B. Morrison a

a Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Thomas Jefferson University Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA 19107, USA
b Rothman Institute, Department of Orthopedic Surgery, Thomas Jefferson University Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, 925 Chestnut Street, Philadelphia, PA 19107, USA

A R T I C L E I N F O

Article history:
Received 16 September 2015
Received in revised form 23 October 2015
Accepted 5 November 2015

Keywords:
Bone marrow lesion
Magnetic resonance imaging
Knee osteoarthritis
Subchondroplasty

A B S T R A C T

Bone marrow lesions observed in magnetic resonance imaging (MRI) have been recognized as a source of knee pain. Subchondroplasty was developed to treat these lesions with a percutaneous injection of calcium phosphate bone substitute into the bone. As subchondroplasty may potentially become a more common procedure in the treatment of knee osteoarthritis, it is important for radiologists to recognize the typical MRI findings and not to confuse them with other pathology. Here we report the MRI findings for two patients following subchondroplasty.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Osteoarthritis (OA) of the knee is a very common disease and it is estimated that almost 50% of United States citizens will have painful knee OA in their lifetime leading to significant socioeconomic impact [1]. Knee OA is typically described by the narrowing of the joint space and loss of articular cartilage, but is has been shown that the degree of joint space narrowing poorly correlates with the incidence and severity of the pain [2,3]. Bone marrow lesions (BMLs), which are a common but nonspecific finding in magnetic resonance imaging (MRI), on the contrary, have been well documented to correlate with pain in OA [4–9]. The association of BML with overlying cartilage damage in OA has also been shown [5,10]. Felson et al. [11] showed in a longitudinal study that an increase in the size of BMLs correlated with increased pain. Furthermore, Moisio et al. [12] demonstrated that the amount of denuded subchondral bone and the volume of the BMLs were strongly correlated with the severity of reported pain. However, regression or even complete resolution of subchondral BMLs has been also reported, so therefore, the utmost clinical relevance of changing BML size remains controversial [7].

The treatment of early- and mid-stage knee OA is somewhat disputable, since injections of viscosupplements and arthroscopic debridement or lavage have been associated with inconsistent results [13,14]; consequently, it has been stated that the evidence to support their use is inconclusive [15,16]. In the end, for patients with severe pain associated with OA, surgical interventions such as high tibial osteotomy, unicompartmental knee arthroplasty, or total knee arthroplasty (TKA) are often recommended [17]. Subchondroplasty was first described in 2007 as a minimally invasive procedure to treat pain in knee OA patients with MRI identified BMLs [18]. Because subchondroplasty is increasingly used to treat painful BMLs [19], it is essential to distinguish postprocedure changes from other marrow pathology on MRI. To our knowledge, the MRI findings of knee subchondroplasty have never been described in the radiological literature. The purpose of this study is to describe the characteristic findings of knee subchondroplasty seen on MRI. We present two cases of subchondroplasty with clinical follow-up information.

2. Case reports

2.1. Case 1

A 42-year-old man [body mass index (BMI) 40.2 kg/m²] who had persistent right knee medial pain for 8 months was treated conservatively with physical therapy, anti-inflammatory medicine, cortisone and hyaluronic acid injection without significant pain relief. Initial MRI showed a medial meniscal tear, patellofemoral chondrosis, and BML at medial tibial plateau. In the follow-up MRI, the size of the BML was shown to increase. Eventually, a decision for arthroscopy and subchondroplasty for the medial tibial plateau lesion was made. Arthroscopy showed loose bodies at suprapatellar pouch in lateral gutter, medial femoral condyle and medial tibial plateau chondrosis, and medial meniscus radial flap tear at posterior horn junction. Consequently, partial meniscectomy and chondroplasty at medial tibial plateau was performed. Then, subchondroplasty was performed and a
A total of 5 ml of Zimmer Knee Creations (West Chester, PA, USA) Accufil calcium phosphate was injected into the medial tibial plateau under fluoroscopy without complications. At the 6-week follow-up visit, the knee pain had decreased. However, at 3-month follow-up visit, the patient complained of significant pain in the right knee. The pain persisted and the follow-up MRI after 4 months from subchondroplasty showed typical postprocedure findings with low signal representing the injected calcium phosphate (Fig. 1). In the radiographs obtained 6 months after the procedure, focal density could be seen in the medial tibial plateau (Fig. 2). Subsequently, the patient was evaluated for knee arthroplasty, which was not performed due to the patient’s morbid obesity and young age.

2.2. Case 2

A 58-year-old man (BMI 29.7 kg/m\(^2\)) suffered from left knee pain for 3 years after twisting his knee. Arthroscopy with partial medial meniscectomy was performed a year after the injury. Conservative treatment with hyaluronic acid injections was also performed to relieve symptoms. Radiographs showed mild OA, and MRI showed BML at the medial tibial plateau (Fig. 3a). Consequently, a decision to perform subchondroplasty without arthroscopy was made. A standard subchondroplasty was performed to the medial tibial plateau without complications. The follow-up MRI exams were performed after 9 and 14 months and showed postprocedure findings with low signal surrounded by a T2 hyperintense rim (Fig. 3b, c). Eventually, the patient developed extensive arthritis in lateral compartment and in patellofemoral compartment, and TKA was performed 17 months after subchondroplasty.

3. Discussion

Since the beginning of the 21st century, the vast increase in the use of MRI for patients with knee pain has led to interest in the role of BMLs in knee OA. Consequently, subchondral BMLs and cartilage loss are thought to be the hallmark of knee OA on MRI [7]. BMLs can be seen in conjunction with trauma, chronic cartilage damage and OA, as an idiopathic entity or as a concomitant feature of other pathologies such as subchondral fracture, osteonecrosis, inflammation or tumor [17]. The majority of BMLs fluctuate in size over time and are potentially reversible [7,20]. However, the understanding of the pathophysiology of BMLs is still limited [9]. In the knee OA, the clinical significance of subchondral BMLs for structural progression, as well as explaining the pain, has been well recognized in multiple studies [4–9]. Ultimately, knee OA patients with BMLs are at substantially increased risk of subchondral bone attrition, subchondral bone plate collapse and need for TKA.

Treatment of early- and mid-stage knee OA is conservative, and invasive procedures including arthroscopy have been deemed to give less long-term pain relief [15,16]. Ultimately, for painful end-stage knee pain...
دانلود مقاله

http://daneshyari.com/article/4221216

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات