Future Generation Computer Systems 63 (2016) 25-36

Contents lists available at ScienceDirect

=
FiSICIS!

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs —

A user mode CPU-GPU scheduling framework for hybrid workloads

@ CrossMark

Bin Wang, Ruhui Ma, Zhengwei Qi *, Jianguo Yao, Haibing Guan

School of Software, Shanghai Jiao Tong University, Shanghai, China

HIGHLIGHTS

We propose a user mode framework for CPU-GPU hybrid resource management.
We analysis the drawbacks of the existing GPU and CPU scheduling systems.
vHybrid is integrated by one GPU algorithm and two algorithms for CPU scheduling.
The result outperforms existing SLA-aware GPU and CPU scheduling systems.

ARTICLE INFO ABSTRACT

Article history:

Received 17 July 2015
Received in revised form

25 January 2016

Accepted 16 March 2016
Available online 11 April 2016

Cloud platforms composed of multi-core CPU and many-core Graphics Processing Unit (GPU) have become
powerful platforms to host incremental CPU-GPU workloads. In this paper, we study the problem of
optimizing the CPU resource management while keeping the quality of service (QoS) of games. To this end,
we propose VHybrid, a lightweight user mode runtime framework, in which we integrate a scheduling
algorithm for GPU and two algorithms for CPU to efficiently utilize CPU resources with the control

accuracy of QoS. vHybrid can maintain the desired QoS with low CPU utilization, while being able to

Keywords:

Hybrid workloads

CPU-GPU resource management
Scheduling

Switched control

guarantee better QoS performance with little overhead. Our evaluations show that vHybrid saves 37.29%
of CPU utilization with satisfactory QoS for hybrid workloads, and reduces three orders of magnitude for
QoS fluctuations, without any impact on GPU workloads.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There is a virtually unanimous consensus in the community that
Graphics Processing Unit (GPU) is one of the most important re-
sources for cloud computing. This is because many of today’s cloud
graphic applications, such as cloud gaming, video rendering, and
social networking, have very demanding GPU requirements, and
poor GPU scheduling can directly affect application performance
and degrade user experience. To provide adequate GPU resources,
GPU virtualization has been widely studied. For example, the work
in [1-7] leveraged GPU virtualization for general purpose com-
puting on GPUs. In our previous work, VGRIS and vGASA [8,9],
achieved a Service Level Agreement (SLA)-aware GPU resource
scheduling policy. They accelerated the running times of GPU-
intensive workloads and guarantee the Quality of Service (QoS) in
the cloud gaming platform.

* Corresponding author.
E-mail addresses: binqgbu2002@sjtu.edu.cn (B. Wang), ruhuima@sjtu.edu.cn
(R. Ma), gizhwei@sjtu.edu.cn (Z. Qi), jlanguo.yao@sjtu.edu.cn (J. Yao),
hbguan@sjtu.edu.cn (H. Guan).

http://dx.doi.org/10.1016/j.future.2016.03.011
0167-739X/© 2016 Elsevier B.V. All rights reserved.

However, only the GPU scheduling mechanism is not sufficient
to effectively enhance the overall computing resource utilization
in a CPU-GPU hybrid platform, where GPU-intensive and CPU-
intensive workloads coexist. For example, in Amazon EC2 GPU
instances [10], each Virtual Machine (VM) can either run the
graphic rendering applications that need GPU resources (e.g., cloud
gaming), or have the CPU-intensive workloads consume the CPU
resources. In addition, cloud users need to make sure their
data remain intact after uploading to the remote server. Thus,
a physical server runs client applications such as Apache [11].
They also require high computation in the CPU. As a result, a
strategy to allocate fair-share CPU resources among CPU workloads
while guaranteeing the QoS of GPU computation is deemed as
a crucial demand. Unfortunately, neither CPU nor GPU resources
are efficiently utilized in the cloud. One likely reason is that the
workloads running in the virtualized environment are significantly
affected by other workloads. The default scheduling mechanisms
are usually designed and embedded by the hardware vendors
who do not consider the use of cloud computing in their design
nor productions. Therefore, the scheduling policies would allocate
excessive CPU and GPU resources for a workload, but starve the
other. On the other hand, most of the previous work only considers
proposals for the scheduling policy of CPU or GPU individually. For


http://dx.doi.org/10.1016/j.future.2016.03.011
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2016.03.011&domain=pdf
mailto:binqbu2002@sjtu.edu.cn
mailto:ruhuima@sjtu.edu.cn
mailto:qizhwei@sjtu.edu.cn
mailto:jianguo.yao@sjtu.edu.cn
mailto:hbguan@sjtu.edu.cn
http://dx.doi.org/10.1016/j.future.2016.03.011

26 B. Wang et al. / Future Generation Computer Systems 63 (2016) 25-36

example, under the use of VGASA in a hybrid platform, each GPU
demand attains its basic QoS but the response time of the CPU
workload still fluctuates hugely every second (Section 2).

Motivated by these problems, this paper proposes vHybrid, a
user mode lightweight CPU-GPU resource management frame-
work with new open loop and adaptive control algorithms, opti-
mizing the CPU utilization while keeping the QoS of GPU-intensive
workloads. All of the work is implemented by library API intercep-
tion, without modifying either the architecture or the source code
of the Operating System (0S), applications, or VMs.

vHybrid consists of two CPU control policies and a GPU
scheduling policy for specific resource management. To meet SLA
requirements for all the GPU resources, vHybrid borrows the SLA-
aware scheduling policy from vGRIS. For CPU-intensive workloads,
the first CPU scheduling policy, open-loop control allocates CPU
resource using a preset model calculated by a relationship between
our scheduling intensity and application performance. It can
maximize the CPU resource usage and vacate as many resources
as possible for the other waiting applications. The second policy
is adaptive scheduling, which dynamically and instantaneously
modifies the CPU resource required proportionally by analyzing
SLA performance of applications. This process costs additional CPU
resources, but ensures a substantial increase in control accuracy of
QoS.

The main contributions of this paper are as follows:

e We propose vHybrid, a user mode framework for CPU-GPU
hybrid resource management, without source code level
changes in applications, guest OSes, or host OSes. Moreover, by
leveraging the mature library API interposition, the guest OS
and the network applications remain unmodified. This enables
vHybrid to be deployed in any clusters to effectively schedule
CPU and GPU resources.

e vHybrid is integrated by one existing algorithm for GPU
scheduling and two new algorithms for CPU scheduling to trade
off overhead and control accuracy of the CPU-GPU hybrid work-
loads. Open loop scheduling is a straightforward implemen-
tation that roughly minimizes the CPU resource occupation.
Adaptive scheduling achieves better control accuracy of QoS for
CPU-intensive workloads, with a small overhead.

e We conduct experiments of real-world workloads, showing
that open-loop scheduling saves 37.29% of CPU utilization
with satisfactory QoS for hybrid workloads, and adaptive
scheduling achieves better QoS performance (i.e., reducing
QoS fluctuations by three orders of magnitude), without
compromising GPU workloads. The result outperforms existing
SLA-aware GPU scheduling systems such as vGASA.

The rest of the paper is organized as follows. Section 2
gives the motivation of this paper. Section 3 introduces the
architecture of vHybrid. Based on the architecture above, two
CPU scheduling policies, open-loop scheduling and adaptive
scheduling, are proposed in Section 4. Comprehensive experiments
and performance evaluation are presented in Section 5. We discuss
the related work in Section 6, followed by conclusions in Section 7.

2. Motivation

To motivate the need for both GPU and CPU scheduling policies,
we start by introducing a few cases of CPU-GPU hybrid workloads
for cloud computing in which QoS is desired. Subsequently,
we show that both the default and SLA GPU scheduling would
sometimes waste GPU and CPU resources for hybrid workloads.
Finally, we conduct the experiments on our machine testbed and
show how the SLA-aware GPU scheduling fails to provide good
performance for CPU-intensive workloads.

2.1. CPU-GPU hybrid workloads

The CPU-GPU hybrid workloads have been employed as
core roles to provide cloud services. For example, virtualization
technology provides numbers of VMs with a software interface
that is different from its underlying hardware counterpart in
the cloud. Each VM can choose between running either CPU-
intensive or GPU-intensive workloads. These workloads are
sometimes mission-critical, which require high QoS of CPU and
GPU resources according to SLA. Meanwhile, the hosts, which run
the hypervisors, would sometimes launch other GPU and CPU
computation instances. Therefore, poor resource sharing among
different workloads would degrade some applications whose
workloads become starved.

In this paper, our CPU-GPU hybrid workloads include three
GPU-intensive instances (DiRT 3, Far Cry 2, StarCraft 2), and
one CPU-intensive workload (Apache). The former three games
will generate intensive graphic computational loads. During the
process of gaming, the pictures usually have widely varying Frames
Per Second (FPS). The FPS may continuously vary as the game
scenes change, in which the QoS estimation is more complex than
other GPU-intensive workloads. On the other hand, the Apache
read and write [12] will continuously generate numbers of tasks
for CPU response, which received 2000 requests per second and
completed 200 requests simultaneously.

2.2. Native GPU scheduling for hybrid workloads

The native GPU scheduling as well as the CPU computation
determines the FPS. Some CPU computation prepares the data for
the GPU, e.g., calculating objects in the upcoming frame according
to the game logic. The data are next uploaded to the GPU buffer, and
then the GPU performs the computation. Finally, the calculation
result is sent back to the main memory for the next iteration, or
output to the screen. The GPU computation library depends on
the application, e.g., Direct3D [13] or OpenGL [14] for gaming and
rendering, or DirectCompute [15], OpenCL [16], or CUDA [17] for
general-purpose GPU computation. The detailed API depends on
the graphics library, e.g., glutSwapBuffers from OpenGL and
Present from Direct3D.

We now present some experiments to observe the performance
of a native scheduling policy (Direct3D) in our hybrid platform
while guaranteeing the QoS of each workload. Each GPU workload
concurrently runs in a separate VM which is configured with
Windows 7' as the guest OS supporting the Direct3D graphics
library, while the host concurrently launches the Apache service.
Fig. 1(a) shows the experimental results.

Compared to their original performance under the same game
configuration, the FPS of the GPU-intensive workloads is reduced
dramatically due to the poor scheduling. The three games have FPS
that fluctuate between 20 and 60. The most likely reason is the
asynchronous and non-preemptive nature of the GPU process. For
example, the default GPU scheduling mechanism in the Direct3D
runtime library tends to allocate resources on a first-come first-
serve manner, which results in an excessive FPS rate for low-end
games and unplayable FPS rate for GPU intensive games when
they are running concurrently in separate VMs. Graphics APIs also
typically work in an asynchronous way to maximize hardware
performance. APIs such as DisplayBuffer immediately return

1 Note that many CPU scheduling policies can easily be implemented in Linux,
e.g., cgroups, but we choose Windows as the basic OS for our implementation
because today’s most GPU computational applications are usually developed in the
Windows platform. For example, the Direct3D framework provides many rendering
functions for games in Windows.



Download English Version:

https://daneshyari.com/en/article/424506

Download Persian Version:

https://daneshyari.com/article/424506

Daneshyari.com


https://daneshyari.com/en/article/424506
https://daneshyari.com/article/424506
https://daneshyari.com

