
Future Generation Computer Systems 63 (2016) 148–156

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Benchmarking performance for migrating a relational application to a
parallel implementation
Krishna Karthik Gadiraju, Manik Verma, Karen C. Davis ∗, Paul G. Talaga
EECS Department, University of Cincinnati, Cincinnati, OH 45221-0030, USA

a r t i c l e i n f o

Article history:
Received 31 May 2015
Received in revised form
19 December 2015
Accepted 22 December 2015
Available online 7 January 2016

Keywords:
Hive
Hadoop
Benchmarking
Big data
SQL
Queries

a b s t r a c t

Many organizations rely on relational database platforms for OLAP-style querying (aggregation and
filtering) for small to medium size applications. We investigate the impact of scaling up the data sizes for
suchqueries.We intend to illustratewhat kindof performance results an organization could expect should
they migrate current applications to big data environments. This paper benchmarks the performance of
Hive (Thusoo et al., 2009) [9], a parallel data warehouse platform that is a part of the Hadoop software
stack.We set up a 4-node Hadoop cluster using Hortonworks HDP 1.3.2 (Hortonworks HDP 1.3.2). We use
the data generator provided by the TPC-DS benchmark (DSGen v1.1.0) to generate data of different scales.
We compare the performance of loading data and querying for SQL and Hive Query Language (HiveQL) on
a relational database installation (MySQL) and on a Hive cluster, respectively. We measure the speedup
for query execution for three dataset sizes resulting from the scale up. Hive loads the large datasets faster
thanMySQL,while it ismarginally slower thanMySQLwhen loading the smaller datasets. Query execution
in Hive is also faster. We also investigate executing Hive queries concurrently in workloads and conclude
that serial execution of queries is a much better practice for clusters with limited resources.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Big data refers to petabyte scale datasets that cannot be man-
aged and analyzed using traditional database management sys-
tems and data warehouses. The last decade has seen an enormous
rise in the size of data collected by different organizations. Accord-
ing to Baru et al. [1], studies have indicated that enterprise data is
estimated to grow from 0.5 ZB in 2008 to 35 ZB in 2020. Traditional
relational database systems are considered incapable of handling
data of such scale. Industry blogs [2–4] indicate that Hive has ad-
vantages over relational databases, but typically there is no exper-
imental evidence to support or quantify the discussion. Moreover,
it is not always clear to a smaller organization what performance
gains they can expect to achieve for their application by migrat-
ing it to a big data platform with a modest investment in addi-
tional hardware. One such organization approached us with this
question. After analyzing their current configuration and typical
queries, we selected a hardware/software configuration and test
query to enable us to provide some indication of what they could
expect if they scaled up their data. Their application only runs one

∗ Corresponding author. Tel.: +1 513 556 2214; fax: +1 513 556 7326.
E-mail address: karen.davis@uc.edu (K.C. Davis).

data intensive query at a time, and they wished to own their own
hardware, so our first phase of experiments target this scenario.
There are no other results in the literature that address this ques-
tion.

Our second phase of experimentation investigates performance
for workloads consisting of multiple copies of queries running
simultaneously. While this is a typical practice in relational envi-
ronments, which are optimized for transaction processing, our ex-
periments illustrate that it ismore efficient to run Hive queries one
at a time rather in a concurrent workload. Previous benchmarking
studies use smaller datasets than our experiments, and some do
not consider analytical queries or load times; others do not com-
pare their results to a relational implementation. None of the pre-
vious studies consider a workload executing concurrently.

In this paper, we discuss the features of Apache Hive and com-
pare its performance against a relational database system. We use
a query and data that are a part of the TPC-DS [5] benchmarking
standard. In the following sections, we briefly describe the features
of Hive. We present our experimental setup, procedures, and re-
sults obtained for loading and querying both MySQL and Hive. In
our second phase of experiments we investigate the performance
of Hive under a workload setting, where multiple queries are run-
ning concurrently, as is typical in relational database applications.
In contrast, all previous studies of Hive performance execute a sin-
gle query at a time.

http://dx.doi.org/10.1016/j.future.2015.12.015
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.12.015
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.12.015&domain=pdf
http://hortonworks.com/products/hdp/hdp-1-3/%23overview
http://www.tpc.org/tpcds/
mailto:karen.davis@uc.edu
http://dx.doi.org/10.1016/j.future.2015.12.015


K.K. Gadiraju et al. / Future Generation Computer Systems 63 (2016) 148–156 149

2. Apache Hive

Apache Hive is a distributed data warehouse that is a part
of the Hadoop software stack. Hive provides SQL-like query and
analysis capability for large datasets, but is primarily a service
on top of the Hadoop File System, not a full database system [6].
The Hive table definitions and mapping to the data are stored in
the Metastore. The Metastore manages the data definitions and
mappings to the data and provides interface services. The default
Metastore is ApacheDerby,which is limited to only one connection
at a time. UsingMySQL, Postgres, Oracle, or SQL Server for the Hive
Metastore supports multiple concurrent Hive sessions [7].

Queries written in HiveQL are translated into a series of
MapReduce [8] jobs. The HiveQL query is translated into a DAG
(Directed Acyclic Graph) of MapReduce jobs. MapReduce is a
parallel programming framework. The MapReduce jobs defined
in the DAG are executed in parallel on the different nodes in the
cluster where the data is stored to obtain the results. A typical Hive
installation [9] has a Metastore, a Thrift server, which provides a
client API for executing the HiveQL statements, external interfaces
such as command line interface (CLI), a driver, which is responsible
for management of the life cycle of a HiveQL statement, and a
compiler which is used to translate a HiveQL statement it receives
from the driver into a DAG of MapReduce jobs. Once the DAG of
MapReduce jobs is prepared by the compiler, the driver invokes
the execution engine (which in the case of Hive is Hadoop) to
execute the MapReduce jobs. A Hive data model consists of tables,
partitions and buckets. A Hive table is similar to a table in a
relational database and is made up of rows and columns. Each
time a table is created in Hive, a new directory is created on HDFS
(Hadoop Distributed File System) and data related to that table is
stored in that folder. A table can have one or more partitions. Each
partition is stored as a separate directorywithin the table directory
and the data is stored inwhichever partition directory it belongs to.
The partitions can be further sub-divided into buckets, depending
upon the hash of a column in the table. The buckets are stored as
individual files within their respective partition directories.

3. Initial load and query execution: experimental setup

3.1. Hardware configuration

A 4-node Hadoop cluster was set up using Hortonworks HDP
1.3.2 [10]. We were limited to a small cluster because of the fea-
sibility of an academic setup wherein we used the available de-
partmental hardware. Eachmachine has dual quad-core Intel Xeon
processors for a total of 16 hyper-threaded cores per machine,
48 GB RAM and 3.08 TB HDD. All four machines communicate with
each other using a gateway machine. The MySQL machine shared
the same processor and RAM, but had a 2.05 TB HDD installed. The
six machines mentioned here are connected together using a Cisco
SG 200-26 26-Port Gigabit Smart Switch.

3.2. Software configuration

The Hadoop cluster was set up using Hortonworks HDP 1.3.2.
The version of Hive used in this study is 0.11, and the version of
MySQL used is 5.1.71. Centos 6.4 minimal operating system was
used to set up the Hadoop cluster, which ran Hadoop version 1.2.

3.3. Experimental procedure

There are several benchmarking standards defined to bench-
mark the performance of Hadoop such as Sorting programs

(Hadoop Sort Program [11], TeraSort [12]), GridMix [13] and Hi-
Bench Benchmarking Suite [14], but none of them have well-
defined queries or a schema necessary for evaluating the run time
performance of a big data management system such as Hive. Big-
Bench [15] and Hive Performance Benchmark [16] both define a
schema and dataset for benchmarking Hive, but BigBench is based
on the TPC-DS benchmark and provides a larger variety and scale
of datasets and queries. While the structured part of BigBench is
based on TPC-DS, it also adds several semi-structured and unstruc-
tured data components [15]. Since we are dealing with how Hive
performs against a relational system, we use the TPC-DS bench-
mark to analyze the performance of Hive.

TPC-DS (Transaction Processing Performance Council–Decision
Support) is a benchmark for evaluating decision support systems.
It defines 99 distinct queries that serve a typical business analysis
environment [17,5]. TPC-DS uses a snowstorm schema, which is
a collection of several snowflake schemas. The schema has been
created to model the decision support functions of a retail product
supplier. We selected Query 7 from the TPC-DS benchmark as
a representative OLAP-style query. It joins 5 tables and contains
4 aggregation operations, 1 group by operation, and 1 order
by operation. We modified the original version of the query to
remove the ‘‘top 100’’ expression in order to focus on aggregation
and filtering over a fact table and several dimension tables. The
modified and HiveQL versions of the query are as shown below.

The modified SQL query is:

select i_item_id,
avg(ss_quantity) agg1,
avg(ss_list_price) agg2,
avg(ss_coupon_amt) agg3,
avg(ss_sales_price) agg4

from store_sales, customer_demographics,
date_dim, item, promotion

where ss_sold_date_sk = d_date_sk and
ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk and
cd_gender = 'F' and
cd_marital_status = 'D' and
cd_education_status = 'College' and
(p_channel_email = 'N' or p_channel_event = 'N')
and

d_year = 2001
group by i_item_id
order by i_item_id;

Since HiveQL uses joins rather than listing tables using the ‘,’
operator in the FROM clause as in the TPC-DS query above, the
revised query is shown below:

select i_item_id,
avg(ss_quantity) agg1,
avg(ss_list_price) agg2,
avg(ss_coupon_amt) agg3,
avg(ss_sales_price) agg4

from store_sales ss join date_dim d on
(ss.ss_sold_date_sk = d.d_date_sk)

join item i on (ss.ss_item_sk = i.i_item_sk)
join promotion p on (ss.ss_promo_sk =
p.p_promo_sk)

join customer_demographics cd on
(ss.ss_cdemo_sk = cd.cd_demo_sk)
where
cd_gender = 'F' and
cd_marital_status = 'D' and
cd_education_status = 'College' and
(p_channel_email = 'N' or p_channel_event = 'N')



Download English Version:

https://daneshyari.com/en/article/424515

Download Persian Version:

https://daneshyari.com/article/424515

Daneshyari.com

https://daneshyari.com/en/article/424515
https://daneshyari.com/article/424515
https://daneshyari.com

