
Future Generation Computer Systems 56 (2016) 277–283

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Improving network performance on multicore systems: Impact of
core affinities on high throughput flows
Nathan Hanford a,∗, Vishal Ahuja a, Matthew Farrens a, Dipak Ghosal a, Mehmet Balman b,
Eric Pouyoul b, Brian Tierney b

a Department of Computer Science, University of California, Davis, CA, United States
b Energy Sciences Network, Lawrence Berkeley National Laboratory, Berkeley, CA, United States

h i g h l i g h t s

• Affinity, or core binding, maps processes to cores in a multicore system.
• We characterized the effect of different receiving flow and application affinities.
• We used OProfile as an introspection tool to examine software bottlenecks.
• The location of the end-system bottleneck was dependent on the choice of affinity.
• There are multiple sources of end-system bottlenecks on commodity hardware.

a r t i c l e i n f o

Article history:
Received 20 February 2015
Received in revised form
15 August 2015
Accepted 11 September 2015
Available online 25 September 2015

Keywords:
Networks
End-system bottleneck
Traffic shaping
GridFTP
Flow control
Congestion avoidance

a b s t r a c t

Network throughput is scaling-up to higher data rates while end-system processors are scaling-out to
multiple cores. In order to optimize high speed data transfer intomulticore end-systems, techniques such
as network adaptor offloads and performance tuning have received a great deal of attention. Furthermore,
several methods of multi-threading the network receive process have been proposed. However, thus far
attention has been focused on how to set the tuning parameters and which offloads to select for higher
performance, and little has been done to understand why the various parameter settings do (or do not)
work. In this paper, we build on previous research to track down the sources of the end-system bottleneck
for high-speed TCP flows. We define protocol processing efficiency to be the amount of system resources
(such as CPU and cache) used per unit of achieved throughput (in Gbps). The amount of various system
resources consumed are measured using low-level system event counters. In a multicore end-system,
affinitization, or core binding, is the decision regarding how the various tasks of network receive process
including interrupt, network, and application processing are assigned to the different processor cores.
We conclude that affinitization has a significant impact on protocol processing efficiency, and that the
performance bottleneck of the network receive process changes significantlywith different affinitization.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Due to a number of physical constraints, processor cores have
hit a clock speed ‘‘wall’’. CPU clock frequencies are not expected to
increase. On the other hand, the data rates in optical fiber networks
have continued to increase,with the physical realities of scattering,

∗ Corresponding author.
E-mail addresses: nhanford@ucdavis.edu (N. Hanford), vahuja@ucdavis.edu

(V. Ahuja), mkfarrens@ucdavis.edu (M. Farrens), dghosal@ucdavis.edu (D. Ghosal),
mbalman@lbl.gov (M. Balman), lomax@es.net (E. Pouyoul), bltierney@es.net
(B. Tierney).

absorption and dispersion being ameliorated by better optics and
precision equipment [1]. Despite these advances at the physical
layer, we are still limitedwith the capability of the system software
for protocol processing. As a result, efficient protocol processing
and adequate system level tuning are necessary to bring higher
network throughput to the application layer.

TCP is a reliable, connection-oriented protocol which guaran-
tees in-order delivery of data from a sender to a receiver, and in
doing so, pushes the bulk of the protocol processing to the end-
system. There is a certain amount of sophistication required to
implement the functionalities of the TCP protocol, which are all
instrumented in the end-system since it is an end-to-end proto-
col. As a result, most of the efficiencies that improve upon current

http://dx.doi.org/10.1016/j.future.2015.09.012
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.09.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.09.012&domain=pdf
mailto:nhanford@ucdavis.edu
mailto:vahuja@ucdavis.edu
mailto:mkfarrens@ucdavis.edu
mailto:dghosal@ucdavis.edu
mailto:mbalman@lbl.gov
mailto:lomax@es.net
mailto:bltierney@es.net
http://dx.doi.org/10.1016/j.future.2015.09.012


278 N. Hanford et al. / Future Generation Computer Systems 56 (2016) 277–283

TCP implementations fall into two categories: first, there are of-
floads which attempt to push TCP functions at (or along with) the
lower layers of the protocol stack (usually hardware, firmware, or
drivers) in order to achieve greater efficiency at the transport layer.
Second, there are tuning parameters, which placemore sophistica-
tion at the upper layers (software, systems, and systems manage-
ment).

Within the category of tuning parameters, this work focuses on
affinity. Affinity (or core binding) is fundamentally the decision re-
garding which resources to use onwhich processor in a networked
multiprocessor system. The New API for networks (NAPI) in the
Linux network receive process allows the NIC to operate in two
different contexts. First, there is the interrupt context (usually im-
plemented with coalescing), in which the Network Interface Con-
troller (NIC) interrupts the processor once it has received a certain
number of packets. Then, the NIC transmits the packets to the pro-
cessor via Direct Memory Access (DMA), and the NIC driver and
the operating system (OS) kernel continue the protocol processing
until the data is ready for the application [2–4]. Second, there is
polling,where the kernel polls theNIC to see if there is any network
data to receive. If such data exists, the kernel processes the data in
accordance with the network and transport layer protocols in or-
der to deliver the data to the Application through the sockets API.

In either case, there are two types of affinity: (1) Flow
affinity, which determines which core will be interrupted to
process the network flow, and (2) Application affinity, which
determines the core that will execute the application process that
receives the network data. Flow affinity is set by modifying the
hexadecimal core descriptor in /proc/irq/<irq#>/smp_affinity,
while Application affinity can be set using taskset or similar tools.
Thus, in a 12-core end-system, there are 144possible combinations
of Flow and Application affinity.

In this paper, we extend our previous work [5,6] with de-
tailed experimentation to stress-test each affinitization combina-
tion with a single, high-speed TCP flow. We perform end-system
introspection, using tools such as Oprofile to understand the im-
pact that the choice of affinity has on the receive-system efficiency.
We conclude that there are three distinct affinitization perfor-
mance scenarios, and that the performance bottleneck varies dras-
tically within these scenarios. First, there is the scenario where the
protocol processing and the application process are on the same
core, which causes the processing capabilities of the single core
to become the bottleneck. Second, there is the scenario where the
flow receiving process and the application receiving the data are
placed on different cores within the same socket. This configura-
tion does not experience a performance bottleneck, but results in
very high memory controller bandwidth utilization. Third, when
the flow receiving process and the receiving application process
are placed on different sockets (and thus, different cores), the bot-
tleneck is most likely inter-socket communication.

The remaining part of the paper is organized as follows. In the
next section,wediscuss and summarize our prior research and give
the motivation of this study. In Section 3, we describe the related
work. In Section 4, we describe the experimental setup used to
conduct this study. We discuss the results in Section 5. Finally, in
Section 6, we give the conclusions and outline the future work.

2. Motivation

In a previous study, we conducted research into the effect
of affinity on the end-system bottleneck [5], and concluded
that affinitization has a significant impact on the end-to-end
performance of high-speed flows. However, the study did not
identify the precise location of the end-system bottleneck for the
different affinitization scenarios and hence a clear understanding
of why different affinitization leads to significantly different

throughput performance. The goal of this research is to identify
the location of the end-system bottleneck in these different
affinitization scenarios, and evaluate whether or not these issues
have been resolved in newer implementations of the Linux kernel
(previous work was carried out on a Linux 2.6 kernel).

There are many valid arguments made in favor of the use of
various NIC offloads [7]. NIC manufacturers typically offer many
suggestions on how to tune the system in order to get the most
out of their high-performance hardware. A valuable resource for
Linux tuning parameters, obtained from careful experimentation
on ESnet’s 100 Gbps testbed, is available from [8]. A number of
reports provide details of the experiments that have led to their
tuning suggestions. However, there is a significant gap in the
understanding for these tuning suggestions and offloads.

In this paper, our methods focus on analyzing the parallelism
of protocol processing within the end-system. We endeavor
to demonstrate the variability of protocol processing efficiency
depending on the spatial placement of protocol processing tasks.
In this experimental study, we employ iperf3 [9] to generate a
stress test which consists of pushing the network I/O limit of the
end-system using a single, very high-speed TCP flow. This is not
a practical scenario; an application such as GridFTP [10] delivers
faster, more predictable performance by using multiple flows,
and such a tool should be carefully leveraged in practice when
moving large amounts of data across long distances. However, it is
important to understand the limitations of data transmission in the
end-system, which can best be accomplished using a single flow.

3. Related work

There have been several studies that have evaluated the
performance of network I/O inmulticore systems [11–14]. Amajor
improvement which is enabled by default in almost all the current
kernels is NAPI [15,3]. NAPI is designed to solve the receive livelock
problem [14] where most of the CPU cycles are spent in interrupt
processing. When the kernel enters a livelock state it spends most
of the available cycles in hard and soft interrupt contexts, and
consequently, is unable to performprotocol processing of anymore
incoming data. As a result of the interrupt queues overflowing,
packets would eventually be dropped during protocol processing.
This would trigger TCP congestion avoidance, but the problem
would soon repeat itself. ANAPI-enabled kernel switches to polling
mode at high rates to save CPU cycles instead of operating in a
purely interrupt-driven mode. Related studies that characterize
packet loss and the resulting performance degradation over
10 Gbps Wide-Area Network (WAN) include [4,16,17]. The study
in [18] focuses more on the architectural sources of latency rather
than throughput of intra-datacenter links.

Another method of improving the adverse effects of the end-
system bottleneck involves re-thinking the hardware architecture
of the end-system altogether. NICs optimized for specific transport
protocols have been proposed along these lines [19]. End-system
architectural reorganization has also been proposed in [20].
Unfortunately, too few of these changes have found their way into
the type of commodity end-systems that have been deployed for
the purposes of these tests.

3.1. Protocol processing parallelism

Since end-systemprocessor architectures have been scaling out
to multiple cores, rather than up in clock speed, systems designers
have faced unique challenges in exploiting this parallelism for
network-related processing. There have been several related, but
essentially discrete methods to this end.



Download English Version:

https://daneshyari.com/en/article/424891

Download Persian Version:

https://daneshyari.com/article/424891

Daneshyari.com

https://daneshyari.com/en/article/424891
https://daneshyari.com/article/424891
https://daneshyari.com

