
Future Generation Computer Systems 56 (2016) 759–765

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A hybrid solution method for CFD applications on GPU-accelerated
hybrid HPC platforms
Xiaocheng Liu a,1, Ziming Zhong b,∗,1, Kai Xu a

a College of Information System and Management, National University of Defense Technology, Changsha, Hunan, China
b Complex Aviation Systems Simulation Laboratory, Beijing, China

h i g h l i g h t s

• We propose a hybrid solution method for CFD applications for CPU+GPU platforms.
• We propose a domain decomposition method based on the functional performance model.
• We evaluate the proposed methods with the lid-driven cavity flow application.

a r t i c l e i n f o

Article history:
Received 9 April 2015
Received in revised form
16 July 2015
Accepted 4 August 2015
Available online 28 August 2015

Keywords:
Computational fluid dynamics
GPU-accelerated multicore system
Performance modeling
Hybrid computing
Data partitioning

a b s t r a c t

Heterogeneous multiprocessor systems, where commodity multicore processors are coupled with
graphics processing units (GPUs), have been widely used in high performance computing (HPC). In this
work, we focus on the design and optimization of Computational Fluid Dynamics (CFD) applications on
suchHPCplatforms. In order to fully utilize the computational power of such heterogeneous platforms,we
propose to design the performance-critical part of CFD applications, namely the linear equation solvers, in
a hybridway. A hybrid linear solver includes both one CPU version and oneGPU version of code for solving
a linear equations system.When a hybrid linear equation solver is invoked during the CFD simulation, the
CPU portion and the GPU portion will be run on corresponding processing devices respectively in parallel
according to the execution configuration. Furthermore, we propose to build functional performance
models (FPMs) of processing devices and use FPM-based heterogeneous decomposition method to
distribute workload between heterogeneous processing devices, in order to ensure balanced workload
andoptimized communication overhead. Efficiency of this approach is demonstrated by experimentswith
numerical simulation of lid-driven cavity flow on both a hybrid server and a hybrid cluster.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computational Fluid Dynamics (CFD) is the analysis of systems
involving fluid flow, heat transfer, and associated phenomena by
means of computer-based numerical simulation [1]. Over the past
few decades, CFD has become a practical cornerstone of most fluid
andmechanical engineering applications, such as aerodynamics of
aircraft and vehicles.

The governing equations of fluid motion are partial differential
equations, which are difficult to solve analytically. Therefore,
numerical methods are usually used. CFD simulations commonly

∗ Corresponding author.
E-mail address: zzm_nudt@163.com (Z. Zhong).

1 Both authors contributed equally to this work.

require a significant amount of computational resources for
accurate solutions, especially for complex simulation scenarios
such as transonic or turbulent flows. With high performance
computing (HPC) platforms, faster and better solutions can be
achieved. Therefore, parallelization of numerical simulations of
fluid dynamics is an attractive research topic from the very
beginning in this area.

The current trend in gaining high computing power is to incor-
porate specialized processing resources such as graphics process-
ing units (GPUs) in multicore systems, thus making a computing
system heterogeneous. Over recent years, a large number of crit-
ical scientific software have been ported to multicore and GPU
architectures. Meanwhile, there has been extensive research on
utilizing hybrid GPU-accelerated multicore platforms. However,
most of the state-of-the-art CFD packages, e.g. OpenFOAM [2], are
designed for facilitating the implementation of CFD applications on
traditional parallel platforms based on CPU processors. Although

http://dx.doi.org/10.1016/j.future.2015.08.002
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.08.002
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.08.002&domain=pdf
mailto:zzm_nudt@163.com
http://dx.doi.org/10.1016/j.future.2015.08.002


760 X. Liu et al. / Future Generation Computer Systems 56 (2016) 759–765

many efforts have been invested in improving the performance of
CFD simulations on traditional HPC platforms, more is required for
hardware-accelerated hybrid HPC platforms.

In this work, we focus on the design and optimization of
CFD applications on GPU-accelerated parallel platforms. In a CFD
application, the performance-critical part is its linear equation
solvers. In order to exploit the computational power of target
platforms, we propose to develop hybrid linear equation solvers.
A hybrid linear equation solver consists of both one CPU version
and one GPU version of code required for solving a linear
equations system. The CPU version and GPU version of code are
implemented using the programming languages and optimized
numerical libraries for CPU and GPU architectures respectively.
When a hybrid linear equation solver is invoked during the
simulation, the CPU portion and the GPU portion will be run
on corresponding processing devices respectively in parallel
according to the execution configuration. During the simulation,
a portion of the workload will be offloaded to GPU to accelerate
the computation, and the result will be uploaded the host when
the computation is finished.

Parallel computing in CFD simulations is usually based on
domain decomposition, which is essentially data parallelism [1].
To achieve the maximum performance of CFD applications on
hybrid HPC platforms, it is important to balance the workload
and minimize the volume of communication among processing
devices. To this end, we propose a method of heterogeneous
domain decomposition. First, by benchmarking the linear equation
solvers of a CFD application, we built the functional performance
models [3] of processing devices. The FPMs are constructed
empirically, and integrate many important features characterizing
the performance of both the architecture and the application [4].
Then, the relative speeds of processing devices are calculated
using FPM-based data partitioning algorithms, which have been
proved accurate and efficient in [5]. Last, the relative speeds
are provided to graph partitioning softwares, such as Metis [6],
Scotch [7], as input (weights) to subdivide the domain into
multiple subdomains, each assigned to one processing device. The
graph partitioning softwares guarantee a balanced workload and
an optimized communication overhead between heterogeneous
processing devices. The problem will then be solved on the entire
domain from problem solutions on subdomains.

In this work, without loss of generality, we experiment with
a typical CFD application, namely the numerical simulation of
the lid-driven cavity flow, on both a GPU-accelerated multicore
node and a cluster of hybrid nodes. We develop the hybrid Con-
jugate Gradient (CG) [8] and Bi-Conjugate Gradient Stabilized
(BiCGSTAB) [9] linear equation solvers for GPU-accelerated com-
puting systems, build functional performance models of the pro-
cessing devices of the experimental platforms, and decompose the
domain based on these performance models. Experimental results
demonstrate that the proposed heterogeneous domain decompo-
sition methods based on performance models are able to balance
the workload and deliver good performance.

The remainder of this paper is organized as follows. Section 2
presents the related work. Section 3 briefly describes the
computational fluid dynamics, the numerical methods and its
parallelization. Section 4 presents the proposed hybrid solution
method. Section 5 presents the experimental settings and results.
Section 6 concludes the paper.

2. Related work

2.1. Computational fluid dynamics

Over the past few decades, a number of CFD packages have been
developed, such as OpenFOAM [2], FEniCS [10], PyFR [11]. Most of

them are aimed at homogeneous parallel platforms, and use the
domain decompositionmethod to realize process-level parallelism
of CFD applications. With the advent of GPU computing [12], many
works have been carried out on developing linear equation solvers
on GPUs for the speedup of CFD applications [13–15]. The recent
progress and challenges in exploiting graphics processors in com-
putational fluid dynamics are reviewed in [16]. Furthermore, there
have also been some study on optimizing the CFD applications on
GPU-accelerated HPC platforms. For example, [17] presents a high-
order flow solver using multi-block structured grids on GPU clus-
ters and propose a workload balancing model for distributing the
workload between CPUs and GPUs. [18] proposes methods for de-
signing and optimizing OpenFOAM-based CFD applications on hy-
brid and heterogeneous HPC platforms.

2.2. Performance models

Performance modeling is a very common technique used for
optimization of scientific applications on parallel HPC platforms.
A large number of performance models have been proposed
for multicore and GPU architectures, such as the Roofline
model [19] for multicore processors, and the integrated power
and performance prediction model for GPU architecture [20]. The
functional performance model (FPM) [5] represents the processor
speed by a continuous function of the problem size. The speed
is defined as the number of computation units performed per
one time unit, and is found experimentally by measuring the
execution time. A functional performancemodel consists of a series
of speed measurements taken over a range of problem sizes. In
many computationally intensive applications, the performance-
critical part that is representative of the whole application in
terms of performance can be extracted and used for performance
measurement [21].

2.3. Load balancing algorithms

The load balancing algorithms can be classified into two cat-
egories, namely static and dynamic algorithms. Static algorithms,
such as data partitioning [22–24], require a priori information
about the parallel application and platform. Static algorithms rely
on accurate performance models as input to predict the future ex-
ecution of the application. Static algorithms are particularly use-
ful for applications for which data locality is critical because data
redistribution incurs significant overhead. However, these algo-
rithms are unable to balance on non-dedicated platforms, where
load changeswith time. Dynamic algorithms, such as task schedul-
ing and work stealing [25–30], balance the load by moving fine-
grained tasks between processors during the execution. Dynamic
algorithms do not require a priori information about execution but
may incur large communication overhead due to data migration.
A number of FPM-based data partitioning algorithms have been
proposed, such as the geometric partitioning algorithm [5] and
the dynamic data partitioning algorithm [31]. In this work, we use
the FPM-based data partitioning to calculate the accurate relative
speeds of processing devices of heterogeneous platforms.

2.4. Graph partitioning

Several software packages for graph partitioning have been
developed, which can be used to partition the graph represent-
ing a system of sparse linear equations. The goal is to subdivide
the graph into smaller subgraphs in order to balance the work-
load and to minimize the volume of communication among pro-
cessors. Graph partitioning algorithms implemented in Metis [6],
Scotch [7], Jostle [32] reduce the number of edges between the tar-
get subdomains, aiming to minimize the total communication cost



Download English Version:

https://daneshyari.com/en/article/424930

Download Persian Version:

https://daneshyari.com/article/424930

Daneshyari.com

https://daneshyari.com/en/article/424930
https://daneshyari.com/article/424930
https://daneshyari.com

