
Future Generation Computer Systems 22 (2006) 80–87

Bioinformatic searches using a single-chip
shared-memory multiprocessor�

Scott F. Smitha,∗, James F. Frenzelb

a Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA
b Department of Electrical and Computer Engineering, University of Idaho, Moscow, ID 83844, USA

Received 5 November 2003; accepted 5 November 2003
Available online 7 December 2004

Abstract

A single-chip shared-memory multiprocessor architecture is introduced which is particularly well suited to common bioin-
formatic computing tasks. The architecture uses asynchronous bus interfaces to create an integrated circuit design methodology
allowing for scaling of the multiprocessor with very little design effort. A key aspect of this design methodology is that it is not
necessary to expend significant design resources and chip area on the clock tree. An analysis of the Smith–Waterman alignment
algorithm running on this architecture shows that the performance penalty due to increased bus latency compared to a fully
synchronous architecture is negligible.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Bioinformatics; Multiprocessor; Scalable; Asynchronous interface

1. Introduction

It is often desirable to search a protein or genome
database for locations that are similar to that of some
query sequence. These databases already contain bil-

� An earlier version of this work has appeared in the Proceedings
of the 2003 International Conference on Parallel and Distributed
Processing Techniques and Applications.

∗ Corresponding author. Tel.: +1 208 426 5743;
fax: +1 208 426 2470.

E-mail addresses: sfsmith@boisestate.edu (S.F. Smith),
jfrenzel@uidaho.edu (J.F. Frenzel).
URL: http://coen.boisestate.edu/ssmith/ (S.F. Smith).

lions of characters of sequence data and the amount
of available data are increasing exponentially. Even a
simple-minded search that looks for an exact match be-
tween the query string and a sub-string of the database
is a very computationally demanding task. Unfortu-
nately, such a simple-minded approach is not very use-
ful. Good searches need to allow for the possibility
that individual database characters may be mutated or
that subsequences have been inserted or deleted from
the database. Heuristic approaches such as BLAST
and FASTA[1] allow for mutations, insertions, and
deletions, but they do not have well defined statisti-
cal properties like algorithms based on dynamic pro-

0167-739X/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2003.11.030



S.F. Smith, J.F. Frenzel / Future Generation Computer Systems 22 (2006) 80–87 81

gramming such as Smith–Waterman[2]. Even though
Smith–Waterman is technically superior, the required
computation time is much longer and hence it is not
often used.

There are four common types of processing systems
used for sequence alignment processing: general pur-
pose desktop computers, general purpose supercom-
puters, application-specific integrated circuit (ASIC)-
based accelerators, and field-programmable gate array
(FPGA)-based accelerators. General purpose desktop
computers are typically limited to using algorithms like
BLAST or FASTA since Smith–Waterman is too slow.
The other three types of processing systems can handle
Smith–Waterman.

General purpose supercomputers are often very ex-
pensive, but it is the purpose of this paper to look at
a general purpose supercomputer that is likely to be
much less expensive. ASIC-based accelerators have the
disadvantage that the production volume for the ASIC
will be small and therefore the design costs cannot be
spread over very many units. Examples of this type
of accelerator are Kestrel[3], SAMBA [4], and Gene-
Matcher 2[5]. The performance of Kestrel is discussed
in Section3, SAMBA is a rather old design (1997), and
GeneMatcher 2 is proprietary, so not much information
exists on it’s detailed design. FPGA-based accelerators
are much less expensive to design, but the unit cost of
the FPGAs (which are bought as a standard part from
an FPGA vendor) is rather high. An example of an
FPGA-based accelerator is DeCypher[6], which is a
proprietary design.

This paper looks at the design of a multiprocessor
system that has the amount of computing power neces-
sary to run the Smith–Waterman algorithm on a single
integrated circuit in a reasonable amount of time. This
system is a general purpose shared-memory multipro-
cessor, which is usable in many applications. The goal
here is to show that the multiprocessor is a very efficient
design for this important bioinformatics problem, but
is not intended to imply that the architecture is in any
way specially designed for the problem. A key feature
of this single-chip multiprocessor is that it scales well
as integrated circuit process technology improvements
allow for more processors on a chip.

The idea is to put many small and simple proces-
sors on a large integrated circuit. A system bus allows
data to pass between the processors and a shared mem-
ory. For the example application, this shared mem-

ory system may actually only be a cache for a much
larger memory located off the integrated circuit. The
database items are only read once and each result is
only written once, so traffic between off-chip memory
and on-chip shared memory cache will be low. For other
applications, a larger on-chip shared memory may be
desirable.

The processors, segments of the system bus, and
memory systems are all intended to be existing in-
tellectual property (IP) designs. A custom interface
between bus segments has been designed, but does
not need redesign for each multiprocessor implemen-
tation. The processors used in this example applica-
tion are ARM9 processors with 8 KB of instruction
cache and 8 KB of data cache (an ARM922T CPU
core). The segments of the system bus are composed of
standard Advanced Microcontroller Bus Architecture,
Advanced High-performance Bus (AMBA AHB)[7].
These buses are multi-master and use no bi-directional
signals. The design methodology is not limited to ARM
processors or the AMBA bus, they are only used as
examples.

The major advantage of the design method shown
in this paper is that it can be implemented with very lit-
tle design effort. The hardest part of composing large
integrated circuits using pre-existing IP is to obtain tim-
ing closure at high clock frequencies. Creating a low-
skew clock tree is very time consuming and the result
requires large amounts of chip area and power. One
alternative is to use local clocking with asynchronous
interfaces such that low-skew clocks only need to be de-
signed for much smaller areas. Systems with this clock-
ing scheme have been calledglobally-asynchronous
locally-synchronous (GALS) as originally proposed in
[8].

Much of the GALS literature (for example,[9] and
[10]) focuses on asynchronous “wrappers” surrounding
synchronous logic, where the asynchronous wrappers
can stop the local clock. This is unappealing as a generic
technique since it interacts badly with some types of
synchronous logic design (e.g., dynamic logic). It also
will require analysis to assure that deadlock cannot oc-
cur. The asynchronous interfaces used in this paper do
not require alteration of any local clock. The interfaces
have been shown to work with latency less than 1.1 ns
in a 1.8 V, 180 nm process using SPICE simulation. De-
tails of the interface operation and SPICE simulation
results can be found in[11].



Download English Version:

https://daneshyari.com/en/article/425050

Download Persian Version:

https://daneshyari.com/article/425050

Daneshyari.com

https://daneshyari.com/en/article/425050
https://daneshyari.com/article/425050
https://daneshyari.com

