
Future Generation Computer Systems 62 (2016) 54–65

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Garbled computation in cloud✩

Yongge Wang a,∗, Qutaibah M. Malluhi b, Khaled MD Khan c,b

a Department of SIS, UNC Charlotte, NC, USA
b KINDI Center for Computing Research, Qatar University, Qatar
c Department of Computer Science and Engineering, Qatar University, Qatar

h i g h l i g h t s

• A linear code based garbled circuits scheme is proposed.
• New concept of all-or-nothing privacy for garbled circuits schemes.
• Much more efficient that existing FHE schemes.

a r t i c l e i n f o

Article history:
Received 26 April 2015
Received in revised form
9 August 2015
Accepted 4 November 2015
Available online 11 December 2015

Keywords:
Cloud computing
Garbled circuits
Reusable garbled computation

a b s t r a c t

With the wide adoption of cloud computing paradigm, it is important to develop appropriate techniques
to protect client data privacy in the cloud. Encryption is one of the major techniques that could be
used to achieve this gaol. However, data encryption at the rest along is insufficient for secure cloud
computation environments. Further efficient techniques for carrying out computation over encrypted
data are also required. Fully homomorphic encryption (FHE) and garbled circuits are naturally used to
process encrypted data without leaking any information about the data. However, existing FHE schemes
are inefficient for processing large amount of data in cloud and garbled circuits are one time programs
and cannot be reused. Using modern technologies such as FHE, several authors have developed reusable
garbled circuit techniques in recent years. But they are not efficient either and could not be deployed at a
large scale. By relaxing the privacy definition from perfect forward secrecy to all-or-nothing privacy, we
are able to design efficient reusable garbled circuits in this paper. These reusable garbled computation
techniques could be used for processing encrypted cloud data efficiently.

© 2016 Published by Elsevier B.V.

1. Introduction

Cloud computing techniques become pervasive and users begin
to store their private encrypted data in cloud services. In order to
take full advantage of the cloud computing paradigm, it is impor-
tant to design efficient techniques to protect client data privacy in
the cloud. Froma first look, encryption at rest seems to be a feasible
solution to address these challenges. Lots of companies are trying
hard to secure cloud data with encryption techniques. But a truly
optimal solution is still far fromus since encryption is not a good or

✩ Work was done when the first author was at Qatar University. The work
reported in this paper is supported by Qatar Foundation Grants NPRP8-2158-1-423
and NPRP X-063-1-014.
∗ Corresponding author.

E-mail addresses: yonwang@uncc.edu (Y. Wang), qmalluhi@qu.edu.qa
(Q.MD Malluhi), k.khan@qu.edu.qa (K.M. Khan).

even an acceptable solution for cloud data storage. If encryption at
rest is the only solution, then the functionality of cloud computing
is limited to: encrypt data at the user’s location, transmit encrypted
data to the cloud, and then bring the data back to the user’s loca-
tion for decryption before being used locally. This is against one of
the cloud computing paradigms ‘‘moving computation is cheaper
than moving data’’ (see, e.g., [1]). Indeed, in many scenarios, it is
less expensive to store data locally than in the cloud. So using the
cloud for data-storage without the capability of processing these
data remotely may not be an economic approach.

This shows the importance of developing techniques for pro-
cessing encrypted data at the cloud without downloading them to
the local site. A natural solution is to use garbled computing tech-
niques such as garbled circuits or fully homomorphic encryption
schemes. Yao [2] introduced the garbled circuit concept which al-
lows computing a function f on an input xwithout leaking any in-
formation about the input x or the circuit used for the computation
of f (x). Since then, garbled circuit based protocols have been used

http://dx.doi.org/10.1016/j.future.2015.11.004
0167-739X/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.future.2015.11.004
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.11.004&domain=pdf
mailto:yonwang@uncc.edu
mailto:qmalluhi@qu.edu.qa
mailto:k.khan@qu.edu.qa
http://dx.doi.org/10.1016/j.future.2015.11.004

Y. Wang et al. / Future Generation Computer Systems 62 (2016) 54–65 55

in numerous places and it has becomeone of the fundamental com-
ponents of secure multi-party computation protocols. Garbled cir-
cuit techniques could be further developed as one of the potential
techniques allowing computation over encrypted cloud data. How-
ever, there are two disadvantages in Yao’s approach. Firstly, Yao’s
garbled circuit is not reusable. Secondly, using a garbled circuit to
evaluate an algorithm on encrypted data takes the worst-case run-
time of the algorithm on all inputs of the same length since Tur-
ing machines are simulated by circuits via unrolling loops to their
worst-case runtime, and via considering all branches of a compu-
tation.

It has been an open question for 30 years of designing reusable
garbled circuits and reusable garbled RAMs or Turing machines.
Recently, Goldwasser et al. [3] andGarg et al. [4] (see also Brakerski
and Rothblum [5], Barak et al. [6], and Pass et al. [7]) constructed
reusable garbled circuits by using techniques of computing on en-
crypted data such as fully homomorphic encryption (FHE) schemes
by Gentry [8], and attribute-based encryption (ABE) schemes for
arbitrary circuits by Gorbunov, Vaikuntanathan and Wee [9] and
Sahai and Waters [10]. Goldwasser et al. [11] also constructed
reusable garbled Turingmachines by employing techniques of FHE,
witness encryption (WE) schemes by Garg et al [12], and the exis-
tence of SNARKs (Succinct Non-interactive Arguments of Knowl-
edge) by Bitansky et al. [13]. However, both of the current reusable
garbling schemes for circuits and Turing machines in Goldwasser
et al. [11,3] andGarg et al. [4] are inefficient unless therewould be a
breakthrough in improving the efficiency of FHE implementations
dramatically. Under current FHE implementation techniques, it is
more efficient to use Yao’s one-time garbled circuits than to use
the garbling schemes in [4,11,3].

In Goldwasser et al.’s garbling scheme [11,3], the owner of a cir-
cuit C encrypts the circuit C using an ideal cipher (e.g., AES) and
gives a copy of this encrypted circuit C̄ = E.Enc(sk, C) to the eval-
uator. Each timewhen the circuit ownerwants the evaluator to cal-
culate C(x), the circuit owner creates a homomorphic encryption
scheme public key hpk and a corresponding private key hsk. Using
the newly created public key hpk, the circuit owner calculates the
homomorphic encryption cipher texts c for the input bits x and key
bits sk bit by bit and constructs a Yao’s one-time garbled circuit D
for decrypting the homomorphic encryption scheme by integrat-
ing the private key hsk within D. The circuit owner gives (D, c)
to the evaluator. The evaluator uses a universal circuit to homo-
morphically decrypt the circuit C from E.Enc(sk, C) and then runs
C on the input x homomorphically. After the evaluation, the eval-
uator obtains the homomorphic encryption ciphertext Ehpk(C(x))
of C(x). In order for the evaluator to decrypt Ehpk(C(x)), the cir-
cuit owner uses an attribute based encryption scheme to send cor-
responding labels for the garbled circuit D so that the evaluator
will be able to decrypt Ehpk(C(x)) to C(x). It is easy to show that
these garbled circuits are reusable since the only published circuit
is the universal circuit which contains no information about the
protected circuit C which is encrypted using a secure symmetric
encryption scheme.

Though [11,3] give an affirmative answer to the reusable gar-
bled circuit openproblem, it is still open to design efficient reusable
garbled circuits. The schemes in Goldwasser et al. [11,3] are in-
efficient from two aspects: expensive homomorphic encryption
schemes are used for the input encryption and there is a slow pro-
cess of integrating the universal circuit and the FHE bootstrapping
operations into the ABE ciphertexts.

The main performance cost for FHE is due to the fact that all
existing FHE schemes are based on ‘‘noisy’’ encryption schemes
where homomorphic operations increase the noise in ciphertexts.
For example, Goldwasser et al.’s solution [3] is based on the Learn-
ing with Errors (LWE) problem. After a homomorphic operation
(e.g., a circuit gate evaluation) is performed on the ciphertexts,

Gentry’s [8] bootstrapping technique is used to refresh the cipher-
texts by homomorphically computing the decryption function on
encrypted secret key, and bringing the noise of the ciphertexts back
to acceptable levels. The bootstrapping operation is the main bot-
tleneck in FHE implementation due to the complexity of homo-
morphic decryption. Recently, Halevi and Shoup [14] reported a
bootstrapping algorithm that takes 30 min to re-encrypt a single-
bit ciphertext. More recently, Halevi and Shoup [15] reported a re-
encryption procedure under 5.5min (for a security level of 76 bits).
By performing an additional single bit operation before bootstrap-
ping, Ducas and Micciancio [16] reported some fast algorithms for
bootstrapping NAND gate though it is not clear whether it can be
extended to other circuit gate types.

The above discussion shows the motivation for designing prac-
tical reusable garbled circuits without the use of FHE schemes. For
Yao’s one-time garbled circuits, the security of input and circuit
privacy has been studied by several authors such as Lindell and
Pinkas [17] and Bellare, Hoang, and Rogaway [18]. However, the
privacy requirement for reusable garbled circuits and reusable gar-
bled Turing machines has not been fully understood yet. In Gold-
wasser et al.’s work [11,3], the simulation based privacy definition
requires perfect forward secrecy. That is, the leakage of one input x
will not leak any information about other inputs y ≠ x. This kind of
perfect forward secrecy is standard inmost cryptographic protocol
designs. However, it may be unnecessarily strong for reusable gar-
bled circuits/Turing machine applications. In this paper, we con-
sider all-or-nothing privacy with reusability for reusable garbled
circuits and reusable garbled Turing machines. By all-or-nothing
privacy with reusability, we mean that if the circuit/Turing ma-
chine owner does not disclose any individual input x (in plain-
text) on which the garbled circuit/Turing machine has evaluated,
then zero information about other inputs (on which the garbled
circuit/Turing machine has evaluated) is leaked. However, if the
circuit/Turing machine owner discloses any input x on which the
garbled circuit/Turing machine has evaluated, then the values of
all other inputs (on which the garbled circuit/Turing machine has
evaluated) will be leaked. Under this security definition of all-or-
nothing privacy with reusability, this paper shows the following
results without using FHE schemes:

1. There exists an efficient universal circuit UC such that for any
circuit C , UC (C̄, x̄) outputs C(x) where C̄ = E.Enc(sk, C), x̄ =
E.Enc(sk, x), and E is an ideal cipher.

We conclude this section with some notations. Unless specified
otherwise, we will use q = 2m and our discussions will be based
on the field GF(q) throughout this paper. Bold face low case letters
such as a, b, c, d, e, f, g are used to denote row or column vectors
over GF(q). It should be clear from the context whether a specific
bold face letter represents a row or column vector. For a string
x ∈ GF(q)n, we use x[i] to denote the ith element of x. That is,
x = x[0] · · · x[n−1].Weuse x∈R GF(q) to denote that x is randomly
chosen from GF(q) with the uniform distribution. We use κ to
denote the security parameter, p(·) to denote a function p that
takes one input, and p(·, ·) to denote a function p that takes two
inputs. A function f is said to be negligible in an input parameter
κ if for all d > 0, there exists K such that for all κ > K , f (κ) <
κ−d. For convenience, we write f (κ) = negl(κ). Two ensembles,
X = {Xκ}κ∈N and Y = {Yκ}κ∈N , are said to be computationally
indistinguishable if for all probabilistic polynomial-time algorithm
D, we have

|Pr[D(Xκ , 1κ) = 1] − Pr[D(Yκ , 1κ) = 1]| = negl(κ).

Throughout the paper, we use probabilistic experiments and
denote their outputs using random variables. For example,
Expreal

E,A (1κ) represents the output of the real experiment for scheme
E with adversary A on security parameter κ .

Download English Version:

https://daneshyari.com/en/article/425538

Download Persian Version:

https://daneshyari.com/article/425538

Daneshyari.com

https://daneshyari.com/en/article/425538
https://daneshyari.com/article/425538
https://daneshyari.com

