
Future Generation Computer Systems 52 (2015) 22–36

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Improving the predictability of distributed stream processors
P. Basanta-Val a,∗, N. Fernández-García b, A.J. Wellings c, N.C. Audsley c

a Departamento de Ingeniería Telemática, Universidad Carlos III de Madrid, Avda de la Universidad no 30, Leganes, 28911, Madrid, Spain
b Centro Universitario de la Defensa. Escuela Militar Marin, Universidade de Vigo, Spain
c Department of Computer Science, University of York, York, YO10 5GH, UK

h i g h l i g h t s

• Model combining stream processing technology and real-time.
• Extensions to the Storm processor.
• Performance evaluation of the extension on a cluster.

a r t i c l e i n f o

Article history:
Received 14 October 2014
Received in revised form
1 February 2015
Accepted 27 March 2015
Available online 14 May 2015

Keywords:
Real-time
Distributed stream processing
Predictable infrastructure

a b s t r a c t

Next generation real-time applications demand big-data infrastructures to process huge and continuous
data volumes under complex computational constraints. This type of application raises new issues on
current big-data processing infrastructures. The first issue to be considered is that most of current in-
frastructures for big-data processing were defined for general purpose applications. Thus, they set aside
real-time performance, which is in some cases an implicit requirement. A second important limitation is
the lack of clear computational models that could be supported by current big-data frameworks. In an ef-
fort to reduce this gap, this article contributes along several lines. First, it provides a set of improvements
to a computational model called distributed stream processing in order to formalize it as a real-time in-
frastructure. Second, it proposes some extensions to Storm, one of the most popular stream processors.
These extensions are designed to gain an extra control over the resources used by the application in order
to improve its predictability. Lastly, the article presents some empirical evidences on the performance
that can be expected from this type of infrastructure.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Current trends in computational infrastructures look at the
Internet as a low-cost distributed-computing platform for hosting
legacy and next generation applications in the cloud [1–3]. The
benefits offered by the use of an infrastructure such as the Internet
are diverse: increased computational power, higher availability
in 24 × 7 periods, and reduced energy consumption [2,4,5]. One
type of application that may potentially benefit from this low-cost
execution platform is big-data systems.

A big-data system processes a collection of data that is difficult
to process using traditional techniques and, thus, requires specific
processing tools. According to [4], the main reasons of this diffi-

∗ Corresponding author.
E-mail addresses: pbasanta@it.uc3m.es (P. Basanta-Val), norberto@cud.uvigo.es

(N. Fernández-García), andy@cs.york.ac.uk (A.J. Wellings), neil@cs.york.ac.uk
(N.C. Audsley).

culty can be characterized using three V’s: The first V is for volume
of processed data, the second V is for variety in the data (that is,
it can come from different sources and be represented using het-
erogeneous formats), and the last V refers to velocity (meaning that
applicationsworkwith data produced at high rates). Typically, big-
data applications run analytics on clusters of machines connected
to the Internet [6–11]. Each big-data analytic refers to how the data
is analyzed to produce a desired output. Typical application do-
mains include meteorology, genome processing, physical simula-
tions, biological research, finance, and Internet search.

Nowadays, to develop these big-data applications, practition-
ers use different software frameworks, including Hadoop [12],
Storm [13,14], and Spark [15] which emphasize different pro-
gramming aspects of the big-data ecosystem. Hadoop is focused
on batch processing of large data sets on commodity machines.
The typical deadline for Hadoop applications ranges fromminutes
to weeks; often processing Petabytes [16] of data. Apache Storm
works on a streaming data model and it is targeted to online appli-
cations with sub-second deadlines. Lastly, Spark offers optimized

http://dx.doi.org/10.1016/j.future.2015.03.023
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.03.023
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.023&domain=pdf
mailto:pbasanta@it.uc3m.es
mailto:norberto@cud.uvigo.es
mailto:andy@cs.york.ac.uk
mailto:neil@cs.york.ac.uk
http://dx.doi.org/10.1016/j.future.2015.03.023


P. Basanta-Val et al. / Future Generation Computer Systems 52 (2015) 22–36 23

I/O access, reducing computational times in comparison with
Hadoop but with heavier computational costs than Storm [16].

Another feature of big-data applications is that they often have
real-time requirements that need to bemet in order to provide ap-
plications with timely response [8,17]. For instance, the Hadron
collider outputs a 300 Gb/s stream that has to be filtered to
300Mb/s for storage and later processing. Some datamining appli-
cations, like, for instance, those used for on-line credit card fraud
detection, and contextual selection of web advertisements may
benefit from real time techniques. In these applications having
shorter response-time usually has an economic impact. This is also
the case of high frequency trading systems [3,18]. Another simple
example of big-data analytic that faces temporal restrictions is the
trending topic detection algorithm used in Twitter to show a dy-
namic, up-to-date, list with the most popular hashtags. The Twit-
ter trending topic detection application is the case of a big-data
scenario characterized by the ‘‘velocity’’, as tweets are small pieces
of data (140 characters), but are produced at a high rate. In all these
cases the response has tomeet application deadlines. Furthermore,
inmany cases big-data applications requirements are complex and
may demand the coexistence of several quality-of-service restric-
tions on a single big-data application.

The common denominator in all these applications is that they
may benefit from techniques included in real-time systems to in-
crease the predictability of the infrastructure and also reduce the
number of required resources. These types of techniques are well
known [19] and may be integrated into the computational infras-
tructures to have fine-grained control on the number of machines
used by an application and in determining an execution timeline
for applications with different types of quality.

Most popular frameworks like Hadoop and Storm were de-
signed for the general purpose domain and are inefficient for real-
time application development. They provide simple models with
minimum parameters that enable simple forms of parallel compu-
tation, relying on the map/reduce and stream programming mod-
els. They do not explicitly assign different parts of the application
to different physical nodes, which is typically required in real-time
applications. They also lack the notion of scheduling parameters
enforced in different computational nodes. In their current forms,
both technologies are inefficient when worst-case analysis is used
to determine the worst-case computation times. Fortunately, both
technologies may increase their predictability by integrating pre-
dictable computational models within their cores. But although
some steps have been taken in increasing predictability in big-data
infrastructures [20], there are still some important pending issues
in the path towards commercial implementations.

In this context, the main goal of this article is to increase the
predictability of the stream processing model, in which Storm is
inspired, including real-time capabilities. The approach follows the
guiding principles that inspired real-time Java [21,22], keeping
backward compatibility with plain Storm, allowing plain and pre-
dictable coexistence in a singlemachine. Thus, the real-time Storm
is able to run traditional and real-time applications in the same
computing cluster (see Fig. 1).

The main improvement in the predictability of Storm in this ar-
ticle is the characterization of the streams of Storm as real-time
entities that can be scheduled using existing real-time scheduling
theory. This characterization allows reasoning about the character-
istics of a real-time application in terms of deadlines, and deter-
mining the number of machines required for its implementation.

The rest of the article is organized as follows. Section 2 ex-
plores other similar frameworks and their relationships with the
real-time stream processingmodel from the perspective of general
purpose and real-time systems. Section 3 defines a simple compu-
tationalmodel for real-time streamprocessing,which ismapped to
the Storm framework later in Section 4. Section 5 shows an appli-
cation developed with this new infrastructure. Section 6 provides

Fig. 1. A framework for real-time big-data stream processing.

practical evidence on the performance one may expect from this
type of infrastructure, showing how to deduce the deadlines of the
applications from their real-time characterization. Lastly Section 7
highlights the main contributions and our most related ongoing
work.

2. Related work

2.1. Stream processing technology

Processing high-volume streams with low-latency has tra-
ditionally required the development of ad-hoc solutions [23].
Usually, these solutions are expensive to implement, difficult
to maintain and are tailored to particular application scenarios,
which limit their reusability [24]. To address these limitations
and support the development of stream processing applications,
several proposals of Stream Processing Engines (like Aurora [25],
STREAM [26], Borealis [27], IBM’s Stream Processing Core [28], and
SEEP [29]) appeared in the state-of-the-art.

However, the emergence of new application scenarios, like high
frequency trading, social network content analysis, sensor-based
monitoring and control applications, and other low-latency big-
data applications, has greatly increased the demands on this kind
of stream processing platforms. As indicated in [30–32], there is a
demand of general-purpose, highly scalable stream computing so-
lutions that can quickly process vast amounts of data.

Taking this into account, it is not surprising to find in the re-
cent state-of-the art several proposals for low-latency big-data
streamprocessing systems, like S4 (Simple Scalable Streaming Sys-
tem) [13], Storm [33], or Spark Streaming [34,35], some of them
backed by important Internet companies like Yahoo (S4) or Twit-
ter (Storm). These systems are designed as general-purpose plat-
forms that can be run on clusters of commodity hardware. Using
specific programming interfaces, developers can implement scal-
able stream processing applications on top of them, taking advan-
tage of the functionalities provided by the platform: information
distribution, cluster management, or fault-tolerance.

All these major approaches have been designed with the gen-
eral purpose performance in mind and do not provide facilities
for real-time performance, like increased architecture awareness,
low-level access facilities, and deadline characterization. However,
most of them may be easily extended via new programming in-
terfaces developed to increase their scalability and fault tolerance.
For instance, Storm processor includes the pluggable scheduler
concept that may be extended to include different scheduling
policies [36] increasing adaptability. Similar architectural benefits
have been exploited in this article to pin the execution graphs of
the streams to specific machines of a cluster.

2.2. Real-time support for stream processing

Big-data infrastructures like Hadoop and Storm lack efficient
implementations to run multiple concurrent real-time applica-
tions with different quality-of-service requirements, because they



Download English Version:

https://daneshyari.com/en/article/425602

Download Persian Version:

https://daneshyari.com/article/425602

Daneshyari.com

https://daneshyari.com/en/article/425602
https://daneshyari.com/article/425602
https://daneshyari.com

