
Future Generation Computer Systems 52 (2015) 147–155

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Security enhancement of cloud servers with a redundancy-based
fault-tolerant cache structure
Hongjun Dai a, Shulin Zhao a, Jiutian Zhang a, Meikang Qiu b,∗, Lixin Tao b

a Department of Computer Science and Technology, Shandong University, China
b Department of Computer Science, Pace University, NY, USA

h i g h l i g h t s

• Proposed a novel MSR cache design for multiprocessors to enhance security.
• MSR cache is used at L2 cache level to give extra data redundancy.
• MOESI protocol is proposed to improve the write hit rate.
• Soft errors in L2 cache blocks could be corrected with the redundancy data in MSR cache.

a r t i c l e i n f o

Article history:
Received 13 September 2014
Received in revised form
19 January 2015
Accepted 3 March 2015
Available online 20 March 2015

Keywords:
Cloud server
Security enhancement
Chip multiprocessor
Fault tolerance
Redundancy-based cache structure
Cache coherence

a b s t r a c t

The modern chip multiprocessors are vulnerable to transient faults caused by either on-purpose attacks
or system mistakes, especially for those with large and multi-level caches in cloud servers. In this
paper, we propose a modified/shared replication cache to keep a redundancy for the latest accessed and
modified/shared L2 cache lines. According to the experiments based onMulti2Sim, this cachewith proper
size can provide considerable data reliability. In addition, the cache can reduce the average latency of
memory hierarchy for error correction, with only about 20.2% of L2 cache energy cost and 2% of L2 cache
silicon overhead.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Processors in cloud servers are usually in concentrated environ-
ments with ‘‘24 hour/7 day’’ continuous operation, therefore their
chips aremore prone to soft errors [1], either caused by on-purpose
attacks or system faults. In the multi-core times, these chip mul-
tiprocessor (CMP) architectures are more susceptible to transient
faults with the reasons as the continuous reduction of supply volt-
ages, and the shrinking of the minimal feature size [2].

In CMPs, more than 60% of chip areas are occupied by the differ-
ent levels of caches, and they are more likely to be exposed to the
soft errors [3,4]. In a chip, multi-level caches become larger with
more complex mechanism to keep data available and fulfill data

∗ Corresponding author.
E-mail addresses: dahogn@sdu.edu.cn (H. Dai), zhaoshulin.cn@gmail.com

(S. Zhao), zhangjiutian@ict.ac.cn (J. Zhang), mqiu@pace.edu (M. Qiu),
ltao@pace.edu (L. Tao).

exchange speed, and they easily suffer from multi-bit soft errors
(MBSE) [5,6]. Many effective methods have been proposed to im-
prove cache reliability in recent years, such as multi-bit error cor-
recting codes (ECC) [7], and some redundancy-based schemes [8,9]
to enhance the security of thewhole system.However, thesemeth-
ods have been usually used in the traditional single-core proces-
sors. This paper aims at using a specialized cache structure to
give redundancy for MBSE correction into multi-level caches, to
improve the security and reliability of CMPs in cloud servers. To
achieve this, we propose an additional modified/shared replication
(MSR) cache to keep recently accessed L2 cache lines copy. Once
error happens, this cache can be used as the source of recovery.

Today, it is natural to use cache coherency protocols for data
consistency in these CMP cores [10], such as modified–exclusive–
shared–invalid(MESI) [11] and modified–owned–exclusive–shared–
invalid(MOESI) [12]. MESI has defined four states: M (modified,
dirty), E (exclusive, clean), S (shared, clean), I (invalid). Then, an ad-
ditional state O (owned, dirty or clean, both modified and shared)
is proposed in MOESI protocol. If an M cache line is hit by a

http://dx.doi.org/10.1016/j.future.2015.03.001
0167-739X/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2015.03.001
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2015.03.001&domain=pdf
mailto:dahogn@sdu.edu.cn
mailto:zhaoshulin.cn@gmail.com
mailto:zhangjiutian@ict.ac.cn
mailto:mqiu@pace.edu
mailto:ltao@pace.edu
http://dx.doi.org/10.1016/j.future.2015.03.001


148 H. Dai et al. / Future Generation Computer Systems 52 (2015) 147–155

Fig. 1. State transition diagram of a typical MOESI coherence protocol.

read-request from other processors, its state is changed to O, and
this avoids the need to write a dirty cache line back to main mem-
ory when other processors try to read. But, it is possible that an S
cache line is dirty, if one of its copies in other cores is in stateO [13].
That means that an S cache line has no redundancy in main mem-
ory either. Even if copies in other processors can be used for error
correction, this also may cause performance and communication
bottleneck in a chip.

Traditionally, some researches have improved the cache
structure to enhance L2 cache MBSE correction in the single-core
processors. They put the emphasis on the redundancymining of L2
cache lines. In [14,8], they have developed a low-cost mechanism
to improve the reliability of the L2 caches against MBSE by
increasing of ‘‘L1 to L2’’ and ‘‘L2 tomainmemory’’ redundancy,with
an average MBSE coverage of about 96%. In [4], a replication cache
can be kept small while providing replicas for a significant fraction
of read hits in L1, which can be used to enhance data integrity
against soft errors. In [9], a dirty replication (DR) cache for defect
tolerance uses selectively multi-bit ECC accompanied by a content
addressable memory, which can search the input data in a table of
the stored data, and return the matching address [15]. It proposes
that soft errors in L2 cache can be corrected with the redundancy
data in the current cache which keeps recent dirty block copies,
or in the main memory which keeps clean block copies. However,
these schemes put their focus on the single-core processors only.

In this paper, we proposed a novel MSR cache design for CMPs,
especially for those in cloud servers to enhance the security of
the systems. MSR cache is used at L2 cache level to give extra
data redundancy. Based on MESI-like protocols, it contains most
recently accessed M and S cache lines, which may have no valid
copies in main memory. Furthermore, the MOESI protocol also has
an extension with an extra N state (no sense) to improve the write
hit rate. N is used to replace I when a probe write hits from other
cores to L2 cache. On the replacement, theMSR cache uses a typical
LRU replacement policy. When a cache line is replaced because
MSR cache is full, it need not write back to main memory, and this
can reduce themainmemorywrites and reducememory hierarchy
latency. Similar to DR cache [9], soft errors in L2 cache blocks could
also be corrected with the redundancy data in MSR cache or main
memory, but MSR cache has less memory accesses, lower power
consumption and smaller silicon area overhead in CMPs.

In the experiments and performance evaluation, the experi-
ments are conducted on an improved simulator from Multi2Sim
[16], and use 5 benchmarks from SPLASH-2 [17] and 4 benchmarks
from PARSEC v2.1 [18] multi-thread benchmarks. According to the
results, MSR cache can ensure L2 cache’s soft error tolerance with
about 20% of average M hit rate, and it also gives S cache lines re-
dundancy for L1 caches corresponding to the L2 cache with about
40% of average S hit rate. This also shows that the MSR cache can
ensure the MBSE tolerance of L2 cache and reduce the number
of accesses to main memory caused by MBSE. Typically, a 8 kB
MSR cache can achieve more than 95% average effective occupy rate
(AEOR) with 20.2% of the L2 cache power consumption and 2.0% of
the L2 cache silicon overhead.

The reminder of this paper is organized as follows. In Section 2,
the necessary background aboutmultiprocessor cache architecture
and cache reliability is introduced. In Section 3, the details of MSR
cache structure are proposed, including the extended cache pro-
tocol coherency, the correcting process, and its hardware imple-
mentation. In Section 4, the experiments and the results are given
to demonstrate the effects and benefits of the solution. Finally, the
paper is summarized in Section 5.

2. Background and motivation

2.1. Typical cache structure in CMPs

A cache coherence protocol refers to the protocol which main-
tains the consistency among all the caches in a system of dis-
tributed shared memory [10]. A designer of a coherence protocol
must choose the states, transitions between states, and events
which cause transitions. For example, Intel Core i3 Clarkdale has
two cores and one 4 MB common L3 cache. In this paper, the
L3 cache is used both in 8-core and in 16-core Symmetric Multi-
Processing (SMP) models for the following experiments. Gener-
ally, L2 caches in CMPs suffer more MBSE compared with those in
single-core processors. That is because cache coherence is neces-
sary to keep the consistency of shared resource data that ends up
stored inmultiple local caches, leading tomass inter-core commu-
nications. Take MOESI in a typical AMD64 architecture [12] as an
example, which is shown in Fig. 1.

• M (Modified)—a cache line holds the most recent correct copy
of data, but it is dirty and does not have a copy in other caches;

• O (Owned)—a cache line holds the most recent correct copy of
data with copies in other caches, but only one processor can
hold the data in this state and it might be dirty;

• E (Exclusive)—a cache line holds the most recent correct copy
of data, and it is clean without a copy in other caches;

• S (Shared)—a cache line holds the most recent correct copy of
data with copies in other caches, and is clean if do not have any
copy in the O;

• I (Invalid)—a cache line does not hold a valid copy of the data,
whichmight be either inmainmemory or caches in other cores.

Then, a read or write probe request occurs when an external
bus master (i.e. cache from other processor cores) needs to ac-
cess the corresponding address butmissed. In particular, one of the
MOESI implementations in Multi2Sim uses the following protocol
functions: LOAD function (first-level cache/memory only), STORE
function (first-level cache/memory only), FIND_AND_LOCK func-
tion (whether hit or miss, lock on if down–up access hits), INVAL-
IDATE function, EVICT function (write back while replacement),
READ_REQUEST function (up–down or down–up), and WRITE_
REQUEST function (up–down or down–up). In the implementa-
tion of AMD, the ‘‘down–up’’ read or write requests are treated in
the same way as read or write bus-master probes that come from
lower level, which indicate that other processors (described as



Download English Version:

https://daneshyari.com/en/article/425615

Download Persian Version:

https://daneshyari.com/article/425615

Daneshyari.com

https://daneshyari.com/en/article/425615
https://daneshyari.com/article/425615
https://daneshyari.com

