
Information and Computation 242 (2015) 287–305

Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Pattern matching with variables: A multivariate complexity 

analysis ✩

Henning Fernau, Markus L. Schmid ∗

Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54286 Trier, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 September 2013
Received in revised form 25 June 2014
Available online 23 March 2015

Keywords:
Parameterised pattern matching
Function matching
NP-completeness
Membership problem for pattern languages
Morphisms

A pattern α, i.e., a string that contains variables and terminals, matches a terminal word 
w if w can be obtained by uniformly substituting the variables of α by terminal words. 
Deciding whether a given terminal word matches a given pattern is NP-complete and this 
holds for several natural variants of the problem that result from whether or not variables 
can be erased, whether or not the patterns are required to be terminal-free or whether or 
not the mapping of variables to terminal words must be injective. We consider numerous 
parameters of this problem (i.e., number of variables, length of w , length of the words 
substituted for variables, number of occurrences per variable, cardinality of the terminal 
alphabet) and for all possible combinations of the parameters (and variants described 
above), we answer the question whether or not the problem is still NP-complete if these 
parameters are bounded by constants.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In the present work, a detailed complexity analysis of a computationally hard pattern matching problem is provided. The 
patterns considered in this context are strings containing variables from {x1, x2, x3, . . .} and terminal symbols from a finite 
alphabet �, e.g., α := x1 a x1 b x2 x2 is a pattern, where a, b ∈ �. We say that a word w over � matches a pattern α if and 
only if w can be derived from α by uniformly substituting the variables in α by terminal words. The respective pattern 
matching problem is then to decide for a given pattern and a given word, whether or not the word matches the pattern. 
For example, the pattern α from above is matched by the word u := bacaabacabbaba, since substituting x1 and x2 in α
by baca and ba, respectively, yields u. On the other hand, α is not matched by the word v := cbcabbcbbccbc, since v
cannot be obtained by substituting the variables of α by some words.

To the knowledge of the authors, this kind of pattern matching problem first appeared in the literature in 1979 in form 
of the membership problem for Angluin’s pattern languages [3,4] (i.e., the set of all words that match a certain pattern) and, 
independently, it has been studied by Ehrenfeucht and Rozenberg in [10], where they investigate the more general problem 
of deciding on the existence of a morphism between two given words (which is equivalent to the above pattern matching 
problem, if the patterns are terminal-free, i.e., they only contain variables).

✩ A preliminary version [11] of this paper was presented at the conference CPM 2013.

* Corresponding author.
E-mail addresses: Fernau@uni-trier.de (H. Fernau), MSchmid@uni-trier.de (M.L. Schmid).

http://dx.doi.org/10.1016/j.ic.2015.03.006
0890-5401/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ic.2015.03.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/yinco
mailto:Fernau@uni-trier.de
mailto:MSchmid@uni-trier.de
http://dx.doi.org/10.1016/j.ic.2015.03.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ic.2015.03.006&domain=pdf


288 H. Fernau, M.L. Schmid / Information and Computation 242 (2015) 287–305

Since their introduction by Angluin, pattern languages have been intensely studied in the learning theory community in 
the context of inductive inference (see, e.g., Angluin [4], Shinohara [32], Reidenbach [24,25] and, for a survey, Ng and Shino-
hara [22]) and, furthermore, their language theoretical aspects have been investigated (see, e.g., Angluin [4], Jiang et al. [19], 
Ohlebusch and Ukkonen [23], Freydenberger and Reidenbach [12], Bremer and Freydenberger [7]). However, a detailed in-
vestigation of the complexity of their membership problem, i.e., the above described pattern matching problem, has been 
somewhat neglected. Some of the early work that is worth mentioning in this regard is by Ibarra et al. [17], who provide 
a more thorough worst case complexity analysis, and by Shinohara [33], who shows that matching patterns with variables 
can be done in polynomial time for certain special classes of patterns. Recently, Reidenbach and Schmid [26,27] identify 
complicated structural parameters of patterns that, if bounded by a constant, allow the corresponding matching problem to 
be performed in polynomial time (see also Schmid [29]).

In the pattern matching community, independent from Angluin’s work, the above described pattern matching problem 
has been rediscovered by a series of papers. This development starts with [5] in which Baker introduces so-called parame-
terised pattern matching, where a text is not searched for all occurrences of a specific factor, but for all occurrences of factors 
that satisfy a given pattern with parameters (i.e., variables). In the original version of parameterised pattern matching, the 
variables in the pattern can only be substituted by single symbols and, furthermore, the substitution must be injective, i.e., 
different variables cannot be substituted by the same symbol. Amir et al. [1] generalise this problem to function matching by 
dropping the injectivity condition and in [2], Amir and Nor introduce generalised function matching, where variables can be 
substituted by words instead of single symbols and “don’t care” symbols can be used in addition to variables. In 2009, Clif-
ford et al. [9] considered generalised function matching as introduced by Amir and Nor, but without “don’t care” symbols, 
which leads to patterns as introduced by Angluin.

In [2], motivations for this kind of pattern matching can be found from such diverse areas as software engineering, image 
searching, DNA analysis, poetry and music analysis, or author validation. Another motivation arises from the observation 
that the problem of matching patterns with variables constitutes a special case of the matchtest for regular expressions 
with backreferences (see, e.g., Câmpeanu et al. [8], Schmid [30]), which nowadays are a standard element of most text 
editors and programming languages (cf. Friedl [14]). Due to its simple definition, the above described pattern matching 
paradigm also has connections to numerous other areas of theoretical computer science and discrete mathematics, such as 
(un-)avoidable patterns (cf. Jiang et al. [18]), word equations (cf. Mateescu and Salomaa [21]), the ambiguity of morphisms 
(cf. Freydenberger et al. [13]), equality sets (cf. Harju and Karhumäki [16]) and database theory (cf. Barceló et al. [6]).

It is a well-known fact that – in its general sense – pattern matching with variables is an NP-complete problem; a result 
that has been independently reported several times (cf. Angluin [4], Ehrenfeucht and Rozenberg [10], Clifford et al. [9]). 
However, there are many different versions of the problem, tailored to different aspects and research questions. For exam-
ple, in Angluin’s original definition, variables can only be substituted by non-empty words and Shinohara soon afterwards 
complemented this definition in [32] by including the empty word as well. This marginal difference, as pointed out by 
numerous results, can have a substantial impact on learnability and decidability questions of the corresponding classes of 
non-erasing pattern languages on the one hand and erasing pattern languages on the other. If we turn from the languages 
point of view of patterns to the respective pattern matching task, then, at a first glance, this difference whether or not 
variables can be erased seems negligible. However, in the context of pattern matching, other aspects are relevant, which 
for pattern languages are only of secondary importance. For example, requiring variables to be substituted in an injective
way is a natural assumption for most pattern matching tasks and bounding the maximal length of these terminal words by 
a constant (which would turn pattern languages into finite languages) makes sense for special applications (cf. Baker [5]). 
Hence, there are many variants of the above described pattern matching problem, each with its individual motivation, and 
the computational hardness of all these variants cannot directly be concluded from the existing NP-completeness results.

For a systematic investigation, we consider the following natural parameters: the number of different variables in the 
pattern, the maximal number of occurrences of the same variable in the pattern, the length of the terminal word, the 
maximum length of the substitution words for variables and the cardinality of the terminal alphabet. Hence, there are 
25 different combinations of parameters and coupling these with the 23 variants of the pattern matching problem with 
variables results in 256 individual problems. For each of these problems, the question arises whether or not the parameters 
can be bounded by (preferably small) constants such that the resulting variant of the pattern matching problem is still 
NP-complete. In this paper, by giving a brief overview of all the existing related results that we are aware of, we show that 
answers to many of these questions can already be concluded from the literature. Nevertheless, several important cases 
have not yet been settled and our main contribution is to close all these remaining gaps, such that we obtain an answer for 
all of these 256 questions. In this regard, we provide dichotomy results (in terms of Schaefer [28]) for the pattern matching 
problem with variables with respect to the above mentioned parameters.

The main motivation for undertaking such a research task is the following. While many NP-complete problems naturally 
occur in theory and also in practical situations, it is almost never the case that the actual problem that has to be solved 
is exactly the one for which NP-completeness has been established. It is rather the case that we face a subproblem of 
an NP-complete problem, tailored to the context in which it is encountered. This is also the reason why NP-completeness 
results are usually accompanied with statements like “This problem is still NP-complete, even if . . . ”. As an example, consider 
the intensive research that is done on proving NP-completeness for graph problems on restricted classes of graphs as planar 
graphs, graphs with constant degree and so on or the classical results that the satisfiability problem for Boolean formulas 
is NP-complete even if every clause contains at most 3 literals. Similarly, if some kind of pattern matching problem with 



Download English Version:

https://daneshyari.com/en/article/426408

Download Persian Version:

https://daneshyari.com/article/426408

Daneshyari.com

https://daneshyari.com/en/article/426408
https://daneshyari.com/article/426408
https://daneshyari.com

