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The main problem in information storage has previously been how large amounts of data 
can be stored. However, the technological development over the years has been able to 
give rather satisfactory answers to this problem. Recently, the focus has shifted towards 
determining how stored information can be efficiently retrieved. This problem is addressed 
in an article by E. Yaakobi and J. Bruck (2012), where information retrieval in associative 
memories is studied. In this paper, we focus on the case where the retrieved information 
unit is unambiguous. In particular, we present characterizations and study various extremal 
properties of such associative memories. Moreover, the algorithmic complexity of certain 
naturally rising problems is considered.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V , E) be a graph on at least two vertices without loops or multiple edges. We also assume that G is connected 
and undirected. As usual, the graphic distance d(x, y) is the number of edges in any shortest path between the vertices 
x and y. If the vertices x and y are adjacent, we denote x ∼ y. The degree of a vertex x ∈ V is denoted by deg(x), the 
minimum degree of G by δ = δ(G) and the maximum degree by � = �(G). We use the notation G[C] for the induced 
subgraph with vertex set C ⊆ V .

The idea behind associative memories is to try to mimic the human memory [11], which is fundamentally associative. 
One can remember a new piece of information much better if it is associated with previously obtained knowledge which 
is already firmly anchored in the memory. The way we process and retrieve (by questions or clues) information is mainly 
performed by associations. The concept of associative memories is important, for example, for cognitive computing and 
machine learning.

In this paper, we consider the model of information retrieval in associative memories introduced by Yaakobi and Bruck in 
[11]. An associative memory is modeled by a graph G = (V , E) as follows. The vertices of the graph represent the memory 
entries containing stored information units. The edges between vertices represent the associations of information units to 
each other. Two distinct vertices x, y ∈ V are said to be t-associated for a positive integer t if d(x, y) ≤ t . The set of vertices 
t-associated to x ∈ V (that is, the ball of radius t centered at x ∈ V ) is denoted by

Bt(x) = {y ∈ V | d(x, y) ≤ t}.
For a subset T ⊆ V , we use the notation
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St(T ) =
⋂
c∈T

Bt(c)

for the set of vertices which are t-associated to all elements of T . Let m be a positive integer. A reference set (or a code) is 
a subset C ⊆ V with |C | ≥ m. We retrieve the information units from the associative memory in the following manner (see 
[11]). A set of m distinct elements {c1, . . . , cm} ⊆ C , called input clues (or codewords), are given. As an output set we receive 
the set of vertices, which are t-associated to all the m input clues, that is, the set St({c1, . . . , cm}). The smaller the output 
set is, the more precisely we know the information unit which we were looking for with the aid of the m input clues. The 
maximum size of an output set

Nt(m, C) = max
T ⊆C,|T |=m

{|St(T )|} ,

is called the uncertainty of an associative memory with a reference set C in G .
We also want to make sure that we have an access to every information unit x ∈ V with at least one set of m input 

clues. Let us denote the set of elements of C which are t-associated to x by

It(x) = It(C; x) = Bt(x) ∩ C .

If |It(x)| < m, then we cannot retrieve x using any set of m input clues. The vertices x ∈ V with |It(x)| ≥ m are called 
accessible. It is natural to require that all the vertices (i.e. information units) are accessible. We also wish to give an upper 
bound N on the uncertainty. This gives rise to the following definition.

Definition 1. Let G = (V , E) be a simple, undirected and connected graph on at least two vertices. Let also C ⊆ V . Assume 
further that t , m and N are positive integers. We say that a pair (G, C) is a (t, m, N)-associative memory with the reference set
C if

(i) |It(x)| ≥ m for any x ∈ V and
(ii) |St(T )| ≤ N for any subset T ⊆ C of size m.

In this paper, we focus on unambiguous output by setting N = 1. In other words, we demand that given m input clues 
the sought information unit is uniquely determined. Furthermore, we restrict ourselves to the radius t = 1. We omit the 
subscript t when t = 1 from both Bt(x) and It(x). We denote a (1, m, 1)-associative memory in short by AM(m). We say 
that C gives an AM(m) if it is a reference set of it. We also say that G admits an AM(m) if there exists a reference set C
giving AM(m) in G .

It is convenient to use the following additional definitions. If |I(C; x)| ≥ s for any x ∈ V , then we say (see [1]) that C is 
an s-fold 1-covering. We also say that x ∈ V covers y ∈ V if d(x, y) ≤ 1.

Previously, information retrieval in associative memories has been examined in [11] and [12], where the problem has 
been studied in binary Hamming spaces and Grassmann graphs, respectively. The study of information retrieval in binary 
Hamming spaces has been continued in [5]. There the problem is also considered in the case where the underlying graph 
is the infinite square grid.

In the following two remarks, we consider two applications of the concept discussed in Definition 1, namely, the sensor 
network monitoring and the Levenshtein’s sequences reconstruction problem.

Remark 2. Consider a sensor network monitoring with RF-based localization introduced in [3,10] in indoor environments. 
Sensors in a building are mapped to vertices of a graph G = (V , E) and a pair of vertices is connected by an edge if the two 
corresponding sensors are within each other’s communication range. A small portion of all sensors C ⊆ V are kept active 
while the others can be put in energy-saving mode. An observer (located at x ∈ V ) periodically receives ID packets from 
neighboring sensors of C (in other words, from I(x)). Suppose C gives an AM(m) in G . The observer can determine her 
location uniquely based only on (at least) m ID packets from I(x).

The codes giving AM(m) have the following advantage over the usual identifying codes [6,8] for sensor networks. It is 
enough to receive any m codewords from I(x) to determine x uniquely in contrast to the usual identifying codes where one 
has to compare I(x) to all other I(y), y ∈ V , to guarantee that the right location x is found.

Remark 3. Let our underlying graph G be the binary Hamming space Fn (see [11]) and C gives a (t, m, N)-associative 
memory. Levenshtein’s sequences reconstruction problem [7,11] is motivated by situations in the fields like chemistry and 
biology, where the only way to overcome errors is to repeatedly transmit in a channel (say M times) the same codeword. 
In other words, a codeword x ∈ C is transmitted through M channels where at most t errors can occur in each. Based on 
the M different outputs y1, . . . , yM ∈ V of the channels, a list decoder DL gives estimations {x1, . . . , x�} (where � ≤ L) 
on the transmitted word x. In [11] the minimum number of channels to guarantee the existence of a successful decoder is 
studied — a successful decoder naturally means that x ∈ {x1, . . . , x�}. The reference sets discussed above provide a code for 
a successful decoder with M = N + 1 channels where N is the uncertainty (in this paper the focus is on N = 1, so we study 
situation where we need only two channels) and the parameter m gives an upper bound on the length of the list provided 
by the decoder, namely L < m. For more details, see [11].
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