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We consider the problem of upper bounding the number of cyclically adjacent transposi-
tions needed to sort a permutation. It is well known that any permutation can be sorted 
using at most n(n−1)

2 adjacent transpositions. We show that, if we allow all adjacent trans-
positions, as well as the transposition that interchanges the element in position 1 with the 
element in the last position, then the number of transpositions needed is at most � n2

4 �.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this note we show that the number of operations 
needed to sort a permutation of length n using “modified 
bubble sort”, where, in addition to adjacent transpositions, 
we allow the transposition of the elements in the first
and last position, is at most �n2

4 �. This answers an open 
question that has appeared in multiple contexts. One area 
where this question has been studied is in the design of 
interconnection networks, another area is the evolutionary 
history of the genome.

Interconnection networks are often modeled as undi-
rected graphs, where the goal is to find a graph that has 
desirable features. The desirable features include the graph 
being symmetric, having a small diameter, being resistant 
to failure, etc. Motivated by these concerns, Akers and Kr-
ishnamurthy [1] initiate the study of using Cayley graphs
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in the design of interconnection networks. A Cayley graph 
is a directed graph that is associated with a group and a 
generating set S . Every element in the group is a node, 
and there is an arc (e1, e2) exactly when e2 = se1 for some 
s ∈ S (where we use e1 and e2 to represent both ele-
ments in the group, and the nodes associated with these 
elements). Determining the diameter of this graph, for a 
given group and generating set, is important in assessing 
the quality of the network.

Another way of phrasing the result in this note (see be-
low) is that the diameter of the Cayley graph associated 
with a permutation group of order n!, with generating set 
that consists of all cyclically adjacent transpositions is �n2

4 �. 
Recall that an adjacent transposition of a permutation is 
a transposition of two adjacent elements. By cyclically ad-
jacent transposition we mean an adjacent transposition, or 
the transposition of the first and last element in the per-
mutation. This particular Cayley graph is among the Cayley 
graphs studied in a survey on interconnection networks 
by Lakshmivarahan, Jwo and Dhrall [8], who refer to it as 
the modified bubble-sort graph. In their survey, the diam-
eter of the modified bubble-sort graph is listed as being 
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unknown. See also Heydemann [6] for another survey of 
Cayley graphs as interconnection networks.

A second motivation for studying the diameter of this 
Cayley graph, is the problem of reconstructing the evo-
lutionary history of the genome. Genetic material can be 
modeled as an element of a permutation group, and the 
modifications to genetic material can be modeled as gen-
erators (which are usually small changes, such as adjacent 
transpositions). Including the transposition of the first and 
last element in the permutation is a natural addition in 
case the genetic material belongs to certain bacteria and 
viruses, because the (physical) DNA of some bacteria and 
viruses has a circular structure. We refer the reader to the 
book [5] for a comprehensive survey on the combinatorial 
and algorithmic aspects of genome rearrangement.

Note that by symmetry, the diameter of the Cayley 
graph generated by (cyclically) adjacent transpositions is 
equal to the maximum over all permutations of the num-
ber of (cyclically) adjacent transpositions required to sort 
the permutation. When considering the Cayley graph gen-
erated by adjacent transpositions only, then the diameter is 
thus equal to the maximum number of operations it takes 
to bubble sort any permutation π . It is well known that 
this is equal to the number of inversions of π , and hence 
the diameter of this Cayley graph of a permutation group 
of order n! is equal to n(n−1)

2 .
When considering cyclically adjacent transpositions, the 

problem becomes remarkably more complex. Jerrum [7]
gives a polynomial time algorithm for computing the 
length of a minimum length sequence of cyclically ad-
jacent transpositions to sort any given permutation (and 
his method also implies an algorithm for computing a 
minimum length sequence). Jerrum’s algorithm is quite 
sophisticated, and does not yield an easy expression for 
the maximum number of transpositions in the sequence. 
The result in this note relies crucially on the results by Jer-
rum [7]. Feng, Chitturi and Sudborough [4] prove that �n2

4 �
is a lower bound, and they conjecture that this bound is 
tight.

Chen and Skiena [3] consider a more general problem 
of sorting a permutation using reversals of (exactly) k con-
secutive elements. Note that a reversal for k = 2 is simply 
an adjacent transposition. Chen and Skiena give upper and 
lower bounds on the sorting distance for both the case of 
permutations and circular permutations, where the latter 
can be thought of as putting the permutation on a cycle, 
i.e. it identifies all n permutations that can be obtained 
by (repeatedly) moving every element one position to the 
right, and the last element to the first position. The upper 
bound obtained for circular permutations is O (n2/k + kn). 
Pevzner [9] and Bafna et al. [2] consider the same problem 
for the case when k = 2. We note that sorting circular per-
mutations using adjacent transpositions is not the same as 
sorting a permutation using cyclically adjacent transposi-
tions. For the first problem, the number of transpositions 
needed to sort (n, 1, 2, 3, . . . , n − 1) is 0, since the circular 
permutation (n, 1, 2, 3, . . . , n − 1) is equivalent to the iden-
tity. When considering the number of cyclically adjacent 
transpositions to sort the permutation (n, 1, 2, 3, . . . , n −1), 
the answer is n − 1.

To the best of our knowledge, the best known upper 
bound on the number of cyclically adjacent transpositions 
to sort a permutation was n(n−1)

2 prior to our work, i.e., 
no better upper bound was known than for the case when 
the transposition of the first and last element is excluded. 
In this paper, we prove that �n2

4 � is an upper bound on the 
number of cyclically adjacent transpositions needed to sort 
any permutation of length n, thus resolving an open ques-
tion of Feng, Chitturi and Sudborough [4]. This matches the 
lower bound given in [4].

2. Preliminaries

We now introduce the notation we will use. Let π be a 
permutation of {1, 2, . . . , n}. We will refer to π(p) as the 
element that is in position p in π . If π(p) = i, we have 
π−1(i) = p, i.e., π−1(i) gives the position of element i
in π . We will sometimes write π as the ordered sequence 
(π(1), π(2), . . . , π(n)). In the following, we will use i, j, k
when we want to refer to an element in {1, 2, . . . , n} and 
p, q, r to refer to a position in {1, 2, . . . , n}.

Given a permutation π and p, q ∈ {1, 2, . . . , n}, applying 
the transposition (p, q) to π means that we “swap” the 
elements in positions p and q to obtain a new permuta-
tion π̃ , where π̃ (p) = π(q), π̃ (q) = π(p), and π̃ (r) = π(r)
for all r ∈ {1, 2, . . . , n}\{p, q}.

We say a transposition (p, q) is adjacent if q = p + 1, 
and we say a transposition (p, q) is cyclically adjacent if q ≡
p + 1 (mod n). From this point on, all transpositions will 
be cyclically adjacent transpositions, and we will therefore 
abbreviate cyclically adjacent transposition to cat.

It will be convenient to refer to a cat in terms of the 
elements that are involved in the cat. If (π−1(i), π−1( j))
is a cat, i.e., π−1(i) ≡ π−1( j) − 1 (mod n), we may use 
the notion swap (i, j) to refer to this cat. We emphasize 
that a swap (i, j) in π is only defined if (π−1(i), π−1( j))
is a cat, and is denoted as an ordered pair, where the first 
element moves “in clockwise direction”, i.e., from position 
π−1(i) to π−1(i) + 1 ≡ π−1( j) (mod n) and the second 
element moves in “counterclockwise direction”, i.e., from 
position π−1( j) to π−1( j) − 1 ≡ π−1(i) (mod n).

We say a permutation π is sorted by a sequence of cats, 
if we obtain the identity after the sequence of cats is ap-
plied to π . It is well known that any permutation π can be 
sorted by at most n(n−1)

2 adjacent transpositions. We will 
show that any permutation π of {1, . . . , n} can be sorted 
with a sequence of at most �n2

4 � cats.
We now review and state results by Jerrum [7] that we 

will use in this note. Given a sequence of cats that sort π , 
we consider the corresponding sequence of swaps of el-
ements. For this sequence of swaps, we let c(i, j) be the 
number of times swap (i, j) occurs minus the number of 
times swap ( j, i) occurs (we will refer to this quantity as 
the net number of times swap (i, j) occurs in the sequence). 
We define the net clockwise displacement for element i as 
d(i) = ∑

j �=i c(i, j). Then we have that

n∑
i=1

d(i) = 0, (1)

since
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