Complexity of a disjoint matching problem on bipartite graphs

Gregory J. Puleo
Coordinated Science Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

A R T I CLE IN F O

Article history:

Received 26 June 2015
Received in revised form 18 April 2016
Accepted 31 May 2016
Available online 3 June 2016
Communicated by R. Uehara

Keywords:

Matchings
Edge coloring
Computational complexity
NP-hardness
Bipartite graphs

Abstract

We consider the following question: given an (X, Y)-bigraph G and a set $S \subseteq X$, does G contain two disjoint matchings M_{1} and M_{2} such that M_{1} saturates X and M_{2} saturates S ? When $|S| \geq|X|-1$, this question is solvable by finding an appropriate factor of the graph. In contrast, we show that when S is allowed to be an arbitrary subset of X, the problem is NP-hard

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A matching in a graph G is a set of pairwise disjoint edges. A matching covers a vertex $v \in V(G)$ if v lies in some edge of the matching, and a matching saturates a set $S \subseteq V(G)$ if it covers every vertex of S.

An (X, Y)-bigraph is a bipartite graph with partite sets X and Y. The fundamental result of matching theory is Hall's Theorem [5], which states that an (X, Y)-bigraph contains a matching that saturates X if and only if $|N(S)| \geq|S|$ for all $S \subseteq X$. While Hall's Theorem does not immediately suggest an efficient algorithm for finding a maximum matching, such algorithms have been discovered and are well-known [1,6].

A natural way to extend Hall's Theorem is to ask for necessary and sufficient conditions under which multiple disjoint matchings can be found. This approach was taken by Lebensold, who obtained the following generalization of Hall's Theorem.

Theorem 1.1 (Lebensold [9]). An (X,Y)-bigraph has k disjoint matchings, each saturating X, if and only if

[^0]$\sum_{y \in Y} \min \{k,|N(y) \cap S|\} \geq k|S|$
for all $S \subseteq X$.
When $k=1$, the left side of (1) is just $|N(S)|$, so Theorem 1.1 contains Hall's Theorem as a special case. As observed by Brualdi, Theorem 1.1 is equivalent to a theorem of Fulkerson [3] about disjoint permutations of 0,1 -matrices. Theorem 1.1 is also a special case of Lovasz's (g, f)-factor theorem [10]. Like Hall's Theorem, Theorem 1.1 does not immediately suggest an efficient algorithm, but efficient algorithms exist for solving the (g, f)-factor problem [4], and these algorithms can be applied to find the desired k disjoint matchings. We discuss the algorithmic aspects further in Section 4.

A different extension was considered by Frieze [2], who considered the following problem:

Disjoint Matchings (DM)
Input: Two (X, Y)-bigraphs G_{1}, G_{2} on the same vertex set. Question: Are there matchings $M_{1} \subseteq G_{1}, M_{2} \subseteq G_{2}$ such that $M_{1} \cap M_{2}=\emptyset$ and each M_{i} saturates X ?

When $G_{1}=G_{2}$, this problem is just the $k=2$ case of the problem considered by Lebensold, and is therefore polyno-
mially solvable. On the other hand, Frieze proved that the Disjoint Matchings problem is NP-hard in general.

In this paper, we consider the following disjointmatching problem, which can be naturally viewed as a restricted case of the Disjoint Matchings problem:

Single-Graph Disjoint Matchings (SDM)

Input: An (X, Y)-bigraph G and a vertex set $S \subseteq X$.
Question: Are there matchings $M_{1}, M_{2} \subseteq G$ such that $M_{1} \cap$ $M_{2}=\emptyset, M_{1}$ saturates X, and M_{2} saturates S ?

We call such a pair $\left(M_{1}, M_{2}\right)$ an S-pair. When $S=X$, this problem is also equivalent to the $k=2$ case of Lebensold's problem. The problem SDM is similar to a problem considered by Kamalian and Mkrtchyan [7], who proved that the following problem is NP-hard:

Residual Matching

Input: An (X, Y)-bigraph G and a nonnegative integer k.
Question: Are there matchings $M_{1}, M_{2} \subseteq G$ such that $M_{1} \cap$ $M_{2}=\emptyset, M_{1}$ is a maximum matching, and $\left|M_{2}\right| \geq k$?

When G has a perfect matching, we can think of the Residual Matching problem as asking whether there is some $S \subseteq X$ with $|S|=k$ such that G has an S-pair. In contrast, the SDM problem asks whether some particular S admits an S-pair. Since k is part of the input to the Residual Matching problem, it is a priori possible that SDM could be polynomially solvable while the Residual Matching problem is NP-hard, since one might need to check exponentially many candidate sets S.

In Section 2, we give a quick reduction from SDM to DM, justifying the view of SDM as a special case of DM, and in Section 3 we show that SDM is NP-hard, thereby strengthening Frieze's result. In Section 4 we show that SDM is polynomially solvable under the additional restriction $|S| \geq|X|-1$.

2. Reducing SDM to DM

In this section, we show that any instance of SDM with $|S|<|X|-1$ reduces naturally to an instance of DM. Since SDM-instances with $|S| \geq|X|-1$ are polynomially solvable, as we show in Section 4, this justifies the claim that SDM is a special case of DM.

Theorem 2.1. Let G be an (X, Y)-bigraph and let $S \subseteq V(G)$ with $|S|<|X|-1$. Construct graphs G_{1}, G_{2} as follows:

$$
\begin{aligned}
& V\left(G_{1}\right)=V\left(G_{2}\right)=V(G) \\
& E\left(G_{1}\right)=E(G) \\
& E\left(G_{2}\right)=E(G) \cup\{x y: x \in X-S, y \in Y\} .
\end{aligned}
$$

The graph G has an S-pair if and only if there are disjoint matchings M_{1}, M_{2} contained in G_{1}, G_{2} respectively, each saturating X.

Proof. If $|Y|<|X|$, then it is clear that G has no S-pair and that G_{1}, G_{2} do not have matchings that saturate X, so assume that $|Y| \geq|X|$.

First suppose that M_{1}, M_{2} are disjoint matchings contained in G_{1}, G_{2} respectively, each saturating X. Let $M_{1}^{\prime}=$ M_{1} and let $M_{2}^{\prime}=\left\{e \in M_{2}: e \cap X \subseteq S\right\}$. It is clear that ($M_{1}^{\prime}, M_{2}^{\prime}$) is an S-pair.

Now suppose that we are given an S-pair $\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$. In order to obtain the matchings M_{1}, M_{2} in G_{1}, G_{2} as needed, we need to enlarge M_{2}^{\prime} so that it saturates all of X, rather than only saturating S. Let $Y^{\prime}=\left\{y \in Y: y \notin V\left(M_{2}^{\prime}\right)\right\}$, and let $H=G_{2}\left[(X-S) \cup Y^{\prime}\right]-M_{1}^{\prime}$.

We claim that H has a matching that saturates $X-S$, and prove this by verifying Hall's Condition. Let any $X_{0} \subseteq$ $X-S$ be given. If $\left|X_{0}\right|=1$, say $X_{0}=\left\{x_{0}\right\}$, then $N_{H}\left(X_{0}\right)$ contains all of Y^{\prime} except possibly the mate of x_{0} in M_{1}. Hence

$$
\begin{aligned}
\left|N_{H}\left(X_{0}\right)\right| & \geq\left|Y^{\prime}\right|-1=|Y|-|S|-1 \\
& \geq|X|-|S|-1 \geq 1=\left|X_{0}\right|
\end{aligned}
$$

as desired. On the other hand, if $\left|X_{0}\right| \geq 2$, then $N_{H}\left(X_{0}\right)$ contains all of Y^{\prime}, so that

$$
\left|N_{H}\left(X_{0}\right)\right|=\left|Y^{\prime}\right|=|Y|-|S| \geq|X|-|S| \geq\left|X_{0}\right|
$$

Hence Hall's Condition holds for H. Now let M be a perfect matching in H, let $M_{1}=M_{1}^{\prime}$, and let $M_{2}=M_{2}^{\prime} \cup M$. By construction, M_{2} is a matching in G_{2} that saturates X. It is clear that $M_{1} \cap M_{2}=\emptyset$, since the edges in M_{1}^{\prime} were omitted from H. Hence M_{1} and M_{2} are as desired.

3. Finding two matchings is NP-hard

Given an instance (G, S) of SDM, we call a pair of matchings $\left(M_{1}, M_{2}\right)$ satisfying the desired condition an S-pair. When G^{\prime} is a subgraph of G and $S^{\prime}=S \cap V\left(G^{\prime}\right)$, we say that an S-pair $\left(M_{1}, M_{2}\right)$ contains an S^{\prime}-pair ($M_{1}^{\prime}, M_{2}^{\prime}$) if $M_{1}^{\prime} \subseteq M_{1}$ and $M_{2}^{\prime} \subseteq M_{2}$.

We prove that SDM is NP-hard via a reduction from 3SAT. Let c_{1}, \ldots, c_{s} be the clauses and $\theta_{1}, \ldots, \theta_{t}$ be the variables of an arbitrary 3SAT instance. We define a graph G as follows.

For each variable θ_{i}, let H_{i} be a copy of the cycle $C_{4 s}$, with vertices $v_{i, 1}, \ldots, v_{i, 4 s}$ written in order. Define
$X_{i}=\left\{v_{i, j}: j\right.$ is even $\}$,
$S_{i}=\left\{v_{i, j}: j \equiv 2 \quad(\bmod 4)\right\}$.
Since H_{i} is an even cycle, it has exactly two perfect matchings, one containing the edge $v_{i, 1} v_{i, 2}$ and the other containing the edge $v_{i, 2} v_{i, 3}$. In an S_{i}-pair $\left(M_{1}, M_{2}\right)$ for H_{i}, we have $v_{i, 1} v_{i, 2} \in M_{1}$ if and only if $v_{i, 2} v_{i, 3} \in M_{2}$, and the same argument holds for the other vertices of S_{i}. Thus, H_{i} has only two possible S_{i}-pairs, illustrated in Fig. 1. We call these pairs the true pair and false pair for H_{i}.

In the full graph G, we will not add any new edges incident to the vertices of X_{i}, so it will still be the case that any S-pair in the full graph induces either the true pair or the false pair in H_{i}. We use these pairs to encode the truth values of the corresponding 3SAT-variables.

For each clause c_{k}, let L_{k} be a copy of K_{2}, with vertices w_{k}, z_{k}. Let $G=\left(\bigcup_{j} H_{j}\right) \cup\left(\bigcup_{k} L_{k}\right)$. Add edges to G as follows: if the variable θ_{i} appears positively in the clause c_{k},

https://daneshyari.com/en/article/427031

Download Persian Version:

https://daneshyari.com/article/427031

Daneshyari.com

[^0]: E-mail address: puleo@illinois.edu.

