Linear-vertex kernel for the problem of packing r-stars into a graph without long induced paths

${ }^{\text {a }}$ Laboratoire d'Informatique, Robotique et Microélectronique de Montpellier, 161 rue Ada, 34095 Montpellier cedex 5, France
${ }^{\text {b }}$ Department of Computer Science, Royal Holloway, University of London, TW20 OEX, Egham, Surrey, UK
${ }^{\text {c }}$ Engineering Systems and Design, Singapore University of Technology and Design, Singapore
${ }^{\text {d }}$ Department of Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa

ARTICLE INFO

Article history:

Received 14 October 2015
Received in revised form 15 December 2015
Accepted 14 January 2016
Available online 26 January 2016
Communicated by Ł. Kowalik

Keywords:

Graph algorithms
Packing
Stars
Kernel
Fixed-parameter tractability

Abstract

Let integers $r \geq 2$ and $d \geq 3$ be fixed. Let \mathcal{G}_{d} be the set of graphs with no induced path on d vertices. We study the problem of packing k vertex-disjoint copies of $K_{1, r}(k \geq 2)$ into a graph G from parameterized preprocessing, i.e., kernelization, point of view. We show that every graph $G \in \mathcal{G}_{d}$ can be reduced, in polynomial time, to a graph $G^{\prime} \in \mathcal{G}_{d}$ with $O(k)$ vertices such that G has at least k vertex-disjoint copies of $K_{1, r}$ if and only if G^{\prime} has. Such a result is known for arbitrary graphs G when $r=2$ and we conjecture that it holds for every $r \geq 2$.

(C) 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a fixed graph H, the problem of deciding whether a graph G has k vertex-disjoint copies of H is called H-Packing. The problem has many applications (see, e.g., [2,3,9]), but unfortunately it is almost always intractable. Indeed, Kirkpatrick and Hell [9] proved that if H contains a component with at least three vertices then H-Packing is NP-complete. Thus, approximation, parameterized, and exponential algorithms have been studied for H-Packing when H is a fixed graph, see, e.g., $[2,6,7,12,13]$.

In this note, we will consider H-Packing when $H=K_{1, r}$ and study $K_{1, r}$-PACKING from a parameterized preprocessing, i.e., kernelization, point of view. ${ }^{1}$ Here k is the parameter. As a parameterized problem, $K_{1, r}$-PACKING was

[^0]first considered by Prieto and Sloper [12] who obtained an $O\left(k^{2}\right)$-vertex kernel for each $r \geq 2$ and a kernel with at most $15 k$ vertices for $r=2$. (Since the case $r=1$ is polynomial-time solvable, we may restrict ourselves to $r \geq 2$.) The same result for $r=2$ was proved by Fellows et al. [6] and it was improved to $7 k$ by Wang et al. [13].

Fellows et al. [6] note that, using their approach, the bound of [12] on the number of vertices in a kernel for any $r \geq 3$ can likely be improved to subquadratic. We believe that, in fact, there is a linear-vertex kernel for every $r \geq 3$ and we prove Theorem 1 to support our conjecture. A path P in a graph G, is called induced if it is an induced subgraph of G. For an integer $d \geq 3$, let \mathcal{G}_{d} denote the set of all graphs with no induced path on d vertices.

Theorem 1. Let integers $r \geq 2$ and $d \geq 3$ be fixed. Then $K_{1, r}$-Packing restricted to graphs in \mathcal{G}_{d}, has a kernel with $O(k)$ vertices.

Since d can be an arbitrary integer larger than two, Theorem 1 is on an ever increasing class of graphs which,
in the "limit", coincides with all graphs. To show that Theorem 1 is an optimal ${ }^{2}$ result, in a sense, we prove that $K_{1, r}$-Packing restricted to graphs in \mathcal{G}_{d} is $\mathcal{N} \mathcal{P}$-hard already for $d=5$ and every fixed $r \geq 3$:

Theorem 2. Let $r \geq 3$. It is $\mathcal{N} \mathcal{P}$-hard to decide if the vertex set of a graph in \mathcal{G}_{5} can be partitioned into vertex-disjoint copies of $K_{1, r}$.

We cannot replace \mathcal{G}_{5} by \mathcal{G}_{4} (unless $\mathcal{N} \mathcal{P}=\mathcal{P}$) due to the following assertion, whose proof is provided in the Appendix of [1].

Theorem 3. Let $r \geq 3$ and $G \in \mathcal{G}_{4}$. We can find the maximal number of vertex-disjoint copies of $K_{1, r}$ in G in polynomial time.

2. Terminology and notation

For a graph $G, V(G)(E(G)$, respectively) denotes the vertex set (edge set, respectively) of $G, \Delta(G)$ denotes the maximum degree of G and n its number of vertices. For a vertex u and a vertex set X in $G, N(u)=\{v: u v \in$ $E(G)\}, N[u]=N(u) \cup\{u\}, d(u)=|N(u)|, N_{X}(u)=N(u) \cap X$, $d_{X}(u)=\left|N_{X}(u)\right|$ and $G[X]$ is the subgraph of G induced by X. We call $K_{1, r}$ an r-star. We say a star intersects a vertex set if the star uses a vertex in the set. We use (G, k, r) to denote an instance of the r-star packing problem. If there are k vertex-disjoint r-stars in G, we say (G, k, r) is a Yes-instance, and we write $G \in \star(k, r)$. Given disjoint vertex sets S, T and integers s, r, we say that S has $s r$-stars in T if there are s vertex-disjoint r-stars with centers in S and leaves in T.

A parameterized problem is a subset $L \subseteq \Sigma^{*} \times \mathbb{N}$ over a finite alphabet Σ. A parameterized problem L is fixedparameter tractable if the membership of an instance (I, k) in $\Sigma^{*} \times \mathbb{N}$ can be decided in time $f(k)|I|^{O(1)}$ where f is a computable function of the parameter k only. Given a parameterized problem L, a kernelization of L is a polynomialtime algorithm that maps an instance (x, k) to an instance (x^{\prime}, k^{\prime}) (the kernel) such that ($\left.x, k\right) \in L$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in L$ and $k^{\prime}+\left|x^{\prime}\right| \leq g(k)$ for some function g. It is well-known that a decidable parameterized problem L is fixed-parameter tractable if and only if it has a kernel. Kernels of small size are of main interest, due to applications.

3. Proof of Theorem 1

Note that the 1 -star packing problem is the classic maximum matching problem and if $k=1$, the r-star packing problem is equivalent to deciding whether $\Delta(G) \geq r$. Both of these problems can be solved in polynomial time. Henceforth, we assume $r, k>1$.

A vertex u is called a small vertex if $\max \{d(v): v \in$ $N[u]\}<r$. A graph without a small vertex is a simplified graph.

We now give two reduction rules for an instance (G, k, r) of $K_{1, r}$-PACKING.

[^1]Reduction Rule 1. If graph G contains a small vertex v, then return the instance ($G-v, k, r$).

It is easy to observe that Reduction Rule 1 can be applied in polynomial time.

Let $G=(V, E)$ be a graph and let C, L be two vertexdisjoint subsets of V. The pair (C, L) is called a constellation if $G[C \cup L] \in \star(|C|, r)$ and there is no star $K_{1, r}$ intersecting L in the graph $G[V \backslash C]$.

Reduction Rule 2. If (C, L) is a constellation, return the instance $(G[V \backslash(C \cup L)], k-|C|)$.

It is easy to observe that Reduction Rule 2 can be applied in polynomial time, provided we are given a suitable constellation.

Lemma 1. Reduction Rules 1 and 2 are safe.
Proof. Clearly, a small vertex v cannot appear in any r-star. Therefore Reduction Rule 1 is safe as G and $G-v$ will contain the same number of r-stars.

To see that Reduction Rule 2 is safe, it is sufficient to show that $G \in \star(k, r)$ if and only if $G[V \backslash(C \cup L)] \in \star(k-$ $|C|, r)$. On the one hand, if $G[V \backslash(C \cup L)] \in \star(k-|C|, r)$, the hypothesis $G[C \cup L] \in \star(|C|, r)$ implies $G \in \star(k, r)$. On the other hand, there are at most $|C|$ vertex-disjoint stars intersecting C. But by hypothesis, every star intersecting L also intersects C. We deduce that there are at most $|C|$ stars intersecting $C \cup L$, and so if $G \in \star(k, r)$, there are at least $k-|C|$ stars in $G[V-(C \cup L)]: G[V \backslash(C \cup L)] \in \star(k-$ $|C|, r)$.

Note that as both rules modify a graph by deleting vertices, any graph G^{\prime} that is derived from a graph $G \in \mathcal{G}_{d}$ by an application of Rules 1 or 2 is also in \mathcal{G}_{d}.

Recall the Expansion Lemma, which is a generalization of the well-known Hall's theorem.

Lemma 2 (Expansion Lemma). [8] Let r be a positive integer, and let m be the size of the maximum matching in a bipartite graph G with vertex bipartition $X \cup Y$. If $|Y|>r m$, and there are no isolated vertices in Y, then there exist nonempty vertex sets $S \subseteq X, T \subseteq Y$ such that S has $|S| r$-stars in T and no vertex in T has a neighbor outside S. Furthermore, the sets S, T can be found in polynomial time in the size of G.

Henceforth, we will use the following modified version of the expansion lemma.

Lemma 3 (Modified Expansion Lemma). Let r be a positive integer, and let m be the size of the maximum matching in a bipartite graph G with vertex bipartition $X \cup Y$. If $|Y|>r m$, and there are no isolated vertices in Y, then there exists a polynomial algorithm(in the size of G) which returns a partition $X=A_{1} \cup B_{1}, Y=A_{2} \cup B_{2}$, such that B_{1} has $\left|B_{1}\right| r$-stars in $B_{2}, E\left(A_{1}, B_{2}\right)=\emptyset$, and $\left|A_{2}\right| \leq r\left|A_{1}\right|$.

Proof. Apply the Expansion Lemma on graph G to get nonempty vertex sets $S \subseteq X, T \subseteq Y$ such that S has $|S|$

https://daneshyari.com/en/article/427041

Download Persian Version:

https://daneshyari.com/article/427041

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: gutin@cs.rhul.ac.uk (G. Gutin).
 1 We provide basic definitions on parameterized algorithms and kernelization in the next section, for recent monographs, see [4,5]; [10,11] are recent survey papers on kernelization.

[^1]: 2 If $K_{1, r}$-PACKING was polynomial time solvable, then it would have a kernel with $O(1)$ vertices.

