ELSEVIER

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Linear-vertex kernel for the problem of packing *r*-stars into a graph without long induced paths

Florian Barbero^a, Gregory Gutin^{b,*}, Mark Jones^b, Bin Sheng^b, Anders Yeo^{c,d}

ABSTRACT

every $r \ge 2$.

^a Laboratoire d'Informatique, Robotique et Microélectronique de Montpellier, 161 rue Ada, 34095 Montpellier cedex 5, France

^b Department of Computer Science, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK

^c Engineering Systems and Design, Singapore University of Technology and Design, Singapore

^d Department of Mathematics, University of Johannesburg, Auckland Park, 2006, South Africa

ARTICLE INFO

Article history: Received 14 October 2015 Received in revised form 15 December 2015 Accepted 14 January 2016 Available online 26 January 2016 Communicated by Ł. Kowalik

Keywords: Graph algorithms Packing Stars Kernel Fixed-parameter tractability

1. Introduction

For a fixed graph H, the problem of deciding whether a graph G has k vertex-disjoint copies of H is called H-PACKING. The problem has many applications (see, e.g., [2,3,9]), but unfortunately it is almost always intractable. Indeed, Kirkpatrick and Hell [9] proved that if H contains a component with at least three vertices then H-PACKING is NP-complete. Thus, approximation, parameterized, and exponential algorithms have been studied for H-PACKING when H is a fixed graph, see, e.g., [2,6,7,12,13].

In this note, we will consider *H*-PACKING when $H = K_{1,r}$ and study $K_{1,r}$ -PACKING from a parameterized preprocessing, i.e., kernelization, point of view.¹ Here *k* is the parameter. As a parameterized problem, $K_{1,r}$ -PACKING was

http://dx.doi.org/10.1016/j.ipl.2016.01.007 0020-0190/© 2016 Elsevier B.V. All rights reserved. first considered by Prieto and Sloper [12] who obtained an $O(k^2)$ -vertex kernel for each $r \ge 2$ and a kernel with at most 15k vertices for r = 2. (Since the case r = 1is polynomial-time solvable, we may restrict ourselves to

© 2016 Elsevier B.V. All rights reserved.

Let integers $r \ge 2$ and $d \ge 3$ be fixed. Let \mathcal{G}_d be the set of graphs with no induced path

on *d* vertices. We study the problem of packing *k* vertex-disjoint copies of $K_{1,r}$ ($k \ge 2$) into

a graph G from parameterized preprocessing, i.e., kernelization, point of view. We show

that every graph $G \in \mathcal{G}_d$ can be reduced, in polynomial time, to a graph $G' \in \mathcal{G}_d$ with O(k)

vertices such that G has at least k vertex-disjoint copies of $K_{1,r}$ if and only if G' has. Such

a result is known for arbitrary graphs G when r = 2 and we conjecture that it holds for

is polynomial-time solvable, we may restrict ourselves to $r \ge 2$.) The same result for r = 2 was proved by Fellows et al. [6] and it was improved to 7k by Wang et al. [13].

Fellows et al. [6] note that, using their approach, the bound of [12] on the number of vertices in a kernel for any $r \ge 3$ can likely be improved to subquadratic. We believe that, in fact, there is a linear-vertex kernel for every $r \ge 3$ and we prove Theorem 1 to support our conjecture. A path *P* in a graph *G*, is called *induced* if it is an induced subgraph of *G*. For an integer $d \ge 3$, let \mathcal{G}_d denote the set of all graphs with no induced path on *d* vertices.

Theorem 1. Let integers $r \ge 2$ and $d \ge 3$ be fixed. Then $K_{1,r}$ -PACKING restricted to graphs in \mathcal{G}_d , has a kernel with O(k) vertices.

Since *d* can be an arbitrary integer larger than two, Theorem 1 is on an ever increasing class of graphs which,

^{*} Corresponding author.

E-mail address: gutin@cs.rhul.ac.uk (G. Gutin).

¹ We provide basic definitions on parameterized algorithms and kernelization in the next section, for recent monographs, see [4,5]; [10,11] are recent survey papers on kernelization.

in the "limit", coincides with all graphs. To show that Theorem 1 is an optimal² result, in a sense, we prove that $K_{1,r}$ -PACKING restricted to graphs in \mathcal{G}_d is \mathcal{NP} -hard already for d = 5 and every fixed $r \geq 3$:

Theorem 2. Let $r \ge 3$. It is \mathcal{NP} -hard to decide if the vertex set of a graph in \mathcal{G}_5 can be partitioned into vertex-disjoint copies of $K_{1,r}$.

We cannot replace \mathcal{G}_5 by \mathcal{G}_4 (unless $\mathcal{NP} = \mathcal{P}$) due to the following assertion, whose proof is provided in the Appendix of [1].

Theorem 3. Let $r \ge 3$ and $G \in \mathcal{G}_4$. We can find the maximal number of vertex-disjoint copies of $K_{1,r}$ in G in polynomial time.

2. Terminology and notation

For a graph *G*, *V*(*G*) (*E*(*G*), respectively) denotes the vertex set (edge set, respectively) of *G*, $\Delta(G)$ denotes the maximum degree of *G* and *n* its number of vertices. For a vertex *u* and a vertex set *X* in *G*, *N*(*u*) = {*v* : *uv* \in *E*(*G*)}, *N*[*u*] = *N*(*u*) \cup {*u*}, *d*(*u*) = |*N*(*u*)|, *N*_{*X*}(*u*) = *N*(*u*) \cap *X*, *d*_{*X*}(*u*) = |*N*_{*X*}(*u*)| and *G*[*X*] is the subgraph of *G* induced by *X*. We call *K*_{1,*r*} an *r*-star. We say a star intersects a vertex set if the star uses a vertex in the set. We use (*G*, *k*, *r*) to denote an instance of the *r*-star packing problem. If there are *k* vertex-disjoint *r*-stars in *G*, we say (*G*, *k*, *r*) is a YES-instance, and we write $G \in \star(k, r)$. Given disjoint vertex sets *S*, *T* and integers *s*, *r*, we say that *S* has *s r*-stars in *T* if there are *s* vertex-disjoint *r*-stars with centers in *S* and leaves in *T*.

A parameterized problem is a subset $L \subseteq \Sigma^* \times \mathbb{N}$ over a finite alphabet Σ . A parameterized problem L is fixedparameter tractable if the membership of an instance (I, k)in $\Sigma^* \times \mathbb{N}$ can be decided in time $f(k)|I|^{O(1)}$ where f is a computable function of the parameter k only. Given a parameterized problem L, a kernelization of L is a polynomialtime algorithm that maps an instance (x, k) to an instance (x', k') (the kernel) such that $(x, k) \in L$ if and only if $(x', k') \in L$ and $k' + |x'| \leq g(k)$ for some function g. It is well-known that a decidable parameterized problem L is fixed-parameter tractable if and only if it has a kernel. Kernels of small size are of main interest, due to applications.

3. Proof of Theorem 1

Note that the 1-star packing problem is the classic maximum matching problem and if k = 1, the *r*-star packing problem is equivalent to deciding whether $\Delta(G) \ge r$. Both of these problems can be solved in polynomial time. Henceforth, we assume r, k > 1.

A vertex *u* is called a *small vertex* if $max\{d(v) : v \in N[u]\} < r$. A graph without a small vertex is a *simplified graph*.

We now give two reduction rules for an instance (G, k, r) of $K_{1,r}$ -PACKING.

Reduction Rule 1. If graph *G* contains a small vertex v, then return the instance (G - v, k, r).

It is easy to observe that Reduction Rule 1 can be applied in polynomial time.

Let G = (V, E) be a graph and let C, L be two vertexdisjoint subsets of V. The pair (C, L) is called a *constellation* if $G[C \cup L] \in \star(|C|, r)$ and there is no star $K_{1,r}$ intersecting L in the graph $G[V \setminus C]$.

Reduction Rule 2. *If* (C, L) *is a constellation, return the instance* $(G[V \setminus (C \cup L)], k - |C|)$.

It is easy to observe that Reduction Rule 2 can be applied in polynomial time, provided we are given a suitable constellation.

Lemma 1. Reduction Rules 1 and 2 are safe.

Proof. Clearly, a small vertex v cannot appear in any r-star. Therefore Reduction Rule 1 is safe as G and G - v will contain the same number of r-stars.

To see that Reduction Rule 2 is safe, it is sufficient to show that $G \in \star(k, r)$ if and only if $G[V \setminus (C \cup L)] \in \star(k - |C|, r)$. On the one hand, if $G[V \setminus (C \cup L)] \in \star(k - |C|, r)$, the hypothesis $G[C \cup L] \in \star(|C|, r)$ implies $G \in \star(k, r)$. On the other hand, there are at most |C| vertex-disjoint stars intersecting *C*. But by hypothesis, every star intersecting *L* also intersects *C*. We deduce that there are at most |C| stars intersecting $C \cup L$, and so if $G \in \star(k, r)$, there are at least k - |C| stars in $G[V - (C \cup L)]$: $G[V \setminus (C \cup L)] \in \star(k - |C|, r)$. \Box

Note that as both rules modify a graph by deleting vertices, any graph G' that is derived from a graph $G \in \mathcal{G}_d$ by an application of Rules 1 or 2 is also in \mathcal{G}_d .

Recall the Expansion Lemma, which is a generalization of the well-known Hall's theorem.

Lemma 2 (Expansion Lemma). [8] Let r be a positive integer, and let m be the size of the maximum matching in a bipartite graph G with vertex bipartition $X \cup Y$. If |Y| > rm, and there are no isolated vertices in Y, then there exist nonempty vertex sets $S \subseteq X$, $T \subseteq Y$ such that S has |S| r-stars in T and no vertex in T has a neighbor outside S. Furthermore, the sets S, T can be found in polynomial time in the size of G.

Henceforth, we will use the following modified version of the expansion lemma.

Lemma 3 (Modified Expansion Lemma). Let r be a positive integer, and let m be the size of the maximum matching in a bipartite graph G with vertex bipartition $X \cup Y$. If |Y| > rm, and there are no isolated vertices in Y, then there exists a polynomial algorithm(in the size of G) which returns a partition $X = A_1 \cup B_1$, $Y = A_2 \cup B_2$, such that B_1 has $|B_1|$ r-stars in B_2 , $E(A_1, B_2) = \emptyset$, and $|A_2| \le r|A_1|$.

Proof. Apply the Expansion Lemma on graph *G* to get nonempty vertex sets $S \subseteq X, T \subseteq Y$ such that *S* has |S|

 $^{^2\,}$ If $K_{1,r}\text{-PACKING}$ was polynomial time solvable, then it would have a kernel with $O\,(1)$ vertices.

Download English Version:

https://daneshyari.com/en/article/427041

Download Persian Version:

https://daneshyari.com/article/427041

Daneshyari.com