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Arvind and Vasudev [2] have introduced the notion of an approximate isomorphism 
between two Boolean functions f and g. They furthermore designed two algorithms 
that construct an approximate isomorphism when given oracle access to f and g. The 
first of these algorithms is specialized to Boolean functions which are computable by 
constant-depth circuits. The second one applies to any pair of Boolean functions. It runs 
in exponential time and achieves optimality up to a factor of order 

√
n. In this paper, we 

present an improved analysis and come up with a variant of the second algorithm that 
runs in polynomial time and achieves optimality up to a factor of (approximately) 2.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Two Boolean functions are said to be isomorphic if they 
are equal up to a permutation of the variables. The prob-
lem of deciding whether two functions f , g : {0, 1}n →
{0, 1} are isomorphic is known to be coNP-hard even when 
f and g are given as DNF formulas. The problem is in �p

2
but it is not known to be in coNP. Agrawal and Thierauf [1]
have shown that the problem is not �p

2 -hard unless the 
polynomial hierarchy collapses to �

p
3 .

Arvind and Vasudev [2] have introduced the notion of 
approximate isomorphisms where the Boolean functions 
f , g are said to be (1 − ρ)-approximately isomorphic if g , 
after applying an appropriate permutation to its variables, 
assigns the same binary labels as f on a fraction ρ ∈ [0, 1]
of the Boolean domain. Clearly ρ = 1 means that f and g
are (fully) isomorphic. The notion of an approximate iso-
morphism naturally leads to the following maximization 
problem: given oracle access to f and g , find a permuta-
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tion of the variables of g which makes the agreement rate 
ρ with the function f as large as possible.

Arvind and Vasudev have designed two approximation 
algorithms. The first one is specialized to Boolean functions 
f , g which are computable by constant-depth circuits, say 
by circuits of depth d. It achieves the following: if f , g are 
(fully) isomorphic, then it runs in time 2logO (d)(n/ε)

√
n and, 

with a probability of at least 1 − 2−�(n) , it returns a per-
mutation of the variables of g that leads to an agreement 
rate of 1 − ε with the function f . The second algorithm 
in [2] applies to any pair of Boolean functions. It runs 
in exponential time and returns a permutation σ of the 
variables of g so that the resulting agreement rate with 
f differs from the optimal one at most by a factor of or-
der

√
n. In this paper, we present an improved analysis and 

come up with an algorithm that runs in polynomial time 
and achieves optimality up to a factor of (approximately) 2. 
See Theorem 3.4 for the precise result.

The remainder of the paper is organized as follows. In 
Section 2, we specify the main problem more formally and 
fix some notations. In Section 3, we present our main re-
sults. In Section 4, we briefly discuss how small the agree-
ment rate between f and gσ can possibly become when 
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the worst permutation σ is chosen for two (fully) isomor-
phic functions f and g .

2. The problem MAX-BFI

The constants 0 and 1 are called binary labels or simply 
labels in this paper. For any Boolean function g : {0, 1}n →
{0, 1}, any vector x = (x[1], . . . , x[n]) and any permutation 
σ of 1, . . . , n, we introduce the notations

xσ = (x[σ(1)], . . . , x[σ(n)]) and gσ (x) = g(xσ ) .

Two Boolean functions f , g : {0, 1}n → {0, 1} are said to 
be isomorphic if there exists a permutation σ such that 
f = gσ . Boolean Function Isomorphism (BFI) is the prob-
lem of deciding whether two Boolean functions, given by 
oracle access,1 are isomorphic.

As in [2], we replace the strict notion of an isomor-
phism by a measure ranging over the interval [0, 1] that 
quantifies “how isomorphic” two Boolean functions are. To 
this end, we define

ρ( f , g) = 2−n · |{x ∈ {0,1}n : f (x) = g(x)}| and

ρ∗( f , g) = max
σ

ρ( f , gσ ) .

We will refer to ρ( f , g) as the agreement rate of f and g . 
Note that f and g are (fully) isomorphic iff ρ∗( f , g) = 1. 
In the sequel, we will discuss the following optimization 
problem:

MAX-BFI Given oracle access to f , g : {0, 1}n → {0, 1}, 
compute a maximizer σ ∗ of ρ( f , gσ ), i.e. compute 
a permutation σ ∗ such that ρ( f , gσ ∗

) = ρ∗( f , g).

In the following section, we will present a randomized ap-
proximation algorithm for this problem.

Notational conventions We denote by Sn the set of permu-
tations of 1, . . . , n. The notation s ∈R S for some finite set S
means that s is chosen uniformly at random from S . Proba-
bilities (resp. expected values) involving parameters s ∈R S
are then written in the form Prs∈R S [·] (resp. Es∈R S [·]).

3. The main results

The key result in this section, Theorem 3.2 below, states 
that random permutations achieve, on the average, an 
agreement rate that differs from the optimal one by fac-
tor 1/2 only. But before we state and prove this formally, 
we discuss a very simple optimization problem in two real 
variables that will play a prominent role in the proof of 
the key result:

Lemma 3.1. Let α, β be constants such that 0 ≤ α ≤ 1 −β ≤ 1. 
Let the function h be given by h(a, b) = ab + (1 − a)(1 − b). 
Then,{

min
a,b

h(a,b) s.t. α ≤ a,b ≤ 1 − β

}
≥ α + β

2
. (1)

1 An oracle for f : {0, 1}n → {0, 1} returns f (x) when called on x.

Proof. For each fixed a, the function ha(b) = h(a, b) is lin-
ear in b. Thus ha(b) is monotonically increasing or mono-
tonically decreasing. Hence ha(b) is minimized for some 
b ∈ {α, 1 − β}. For reasons of symmetry, the analogous re-
mark is valid with the roles of a and b exchanged. There-
fore at least one of the sets {(α, 1 − β), (1 − β, α)} and 
{(α, α), (1 − β, 1 − β)} must contain an optimal solution 
(a∗, b∗) of the minimization problem on the left-hand side 
in (1). In the former case,

h(a∗,b∗) = α(1 − β) + (1 − α)β = α + β − 2αβ

whereas, in the latter case,

h(a∗,b∗) ≥ min{α2 + (1 − α)2, β2 + (1 − β)2} .

Our assumptions on α and β imply that α, β ≥ 0 and 
α + β ≤ 1. Since the geometric mean is upper-bounded by 
the arithmetic mean, we have αβ ≤ (α+β)2/4 ≤ (α+β)/4
and α(1 −α) ≤ 1/4. Thus α + β − 2αβ ≥ (α + β)/2. More-
over,

α2 + (1 − α)2 = 1 − 2α(1 − α) ≥ 1 − 1

2
= 1

2
≥ α + β

2
and, for reasons of symmetry, the analogous inequality 
holds with the roles of α and β exchanged. In any case, 
one gets h(a∗, b∗) ≥ (α + β)/2, as desired. �

One can easily extend the proof of Lemma 3.1 and 
show that the optimal solution (a∗, b∗) is an element of 
{(α, 1 − β), (1 − β, α)} if α, β ≤ 1/2, whereas it equals 
(α, α) (resp. (β, β)) if α > 1/2 (resp. if β > 1/2). Since we 
do not need this extension in the sequel, we omit the de-
tails.

We are now well prepared for the key result in this 
section:

Theorem 3.2. For each pair f , g : {0, 1}n → {0, 1} of Boolean 
functions, we have

Eσ∈RSn [ρ( f , gσ )] ≥ ρ∗( f , g)

2
.

Proof. For the sake of brevity, let B = {0, 1}n and, for i =
0, . . . , n, let Bi ⊆ B be the subset consisting of all points 
with Hamming weight i. Let si( f ) = |Bi ∩ f −1(1)| denote 
the number of points in Bi to which f assigns the la-
bel 1. Let X(u, σ) be the function that evaluates to 1 if 
f (u) = gσ (u) = g(uσ ) and that evaluates to 0 otherwise. If 
u is chosen uniformly at random from Bi and σ is chosen 
uniformly at random from Sn , then (u, uσ ) is uniformly 
distributed over Bi × Bi . From this and from the fact that 
|Bi | =

(n
i

)
, it follows that

Eu∈R Bi ,σ∈RSn [X(u,σ )] = si( f )si(g)(n
i

)2

+
((n

i

) − si( f )
) ((n

i

) − si(g)
)

(n
i

)2
.

Let Yi(σ ) count the total number of agreements between 
f and gσ on Bi , i.e., Yi(σ ) = ∑

u∈Bi
X(u, σ). Note that, for 

each σ0 ∈ Sn , we have
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