
Information Processing Letters 116 (2016) 241–244

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Computing runs on a general alphabet

Dmitry Kosolobov

Ural Federal University, Ekaterinburg, Russia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 July 2015
Received in revised form 24 November 2015
Accepted 26 November 2015
Available online 30 November 2015
Communicated by Ł. Kowalik

Keywords:
Runs
General alphabet
Algorithms
Repetitions

We describe a RAM algorithm computing all runs (maximal repetitions) of a given string 
of length n over a general ordered alphabet in O (n log

2
3 n) time and linear space. Our 

algorithm outperforms all known solutions working in �(n logσ) time provided σ = n�(1) , 
where σ is the alphabet size. We conjecture that there exists a linear time RAM algorithm 
finding all runs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions in strings are fundamental objects in both 
stringology and combinatorics on words. In some sense the 
notion of run, introduced by Main [13], allows to grasp the 
whole repetitive structure of a given string in a relatively 
simple form. Informally, a run of a string is a maximal 
periodic substring that is at least as long as twice its mini-
mal period (the precise definition follows). In [9] Kolpakov 
and Kucherov showed that any string of length n contains 
O (n) runs and proposed an algorithm computing all runs 
in linear time on an integer alphabet {0, 1, . . . , nO (1)} and 
O (n logσ) time on a general ordered alphabet, where σ is 
the number of distinct letters in the input string. Recently, 
Bannai et al. described another interesting algorithm com-
puting all runs in O (n logσ) time [1]. Modifying the ap-
proach of [1], we prove the following theorem.

Theorem. For a general ordered alphabet, there is an algorithm 
that computes all runs in a string of length n in O (n log

2
3 n) time 

and linear space.

E-mail address: dkosolobov@mail.ru.

This is in contrast to the result of Main and Lorentz 
[14] who proved that any algorithm deciding whether a 
string over a general unordered alphabet has at least one 
run requires �(n log n) comparisons in the worst case.

Our algorithm outperforms all known solutions when 
the number of distinct letters in the input string is suf-
ficiently large (e.g., σ = n�(1)). It should be noted that 
the algorithm of Kolpakov and Kucherov can hardly be im-
proved in a similar way since it strongly relies on a struc-
ture (namely, the Lempel–Ziv decomposition) that cannot 
be computed in o(n logσ) time on a general ordered al-
phabet (see [11]).

Based on some theoretical observations of [11], we con-
jecture that one can further improve our result.

Conjecture. For a general ordered alphabet, there is a linear 
time algorithm computing all runs.

2. Preliminaries

A string of length n over an alphabet � is a map 
{1, 2, . . . , n} �→ �, where n is referred to as the length of 
w , denoted by |w|. We write w[i] for the ith letter of 
w and w[i.. j] for w[i]w[i+1] . . . w[ j]. A string u is a sub-
string (or a factor) of w if u = w[i.. j] for some i and j. The 

http://dx.doi.org/10.1016/j.ipl.2015.11.016
0020-0190/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2015.11.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:dkosolobov@mail.ru
http://dx.doi.org/10.1016/j.ipl.2015.11.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.11.016&domain=pdf


242 D. Kosolobov / Information Processing Letters 116 (2016) 241–244

pair (i, j) is not necessarily unique; we say that i specifies 
an occurrence of u in w . A string can have many occur-
rences in another string. A substring w[1.. j] (respectively, 
w[i..n]) is a prefix (respectively, suffix) of w . An integer 
p is a period of w if 0 < p ≤ |w| and w[i] = w[i+p]
for all i = 1, . . . , |w|−p; p is the minimal period of w if 
p is the minimal positive integer that is a period of w . 
For integers i and j, the set {k ∈ Z: i ≤ k ≤ j} (possibly 
empty) is denoted by [i.. j]. Denote [i.. j) = [i.. j−1] and 
(i.. j] = [i+1.. j].

A run of a string w is a substring w[i.. j] whose pe-
riod is at most half of the length of w[i.. j] and such that 
both substrings w[i−1.. j] and w[i.. j+1], if defined, have 
strictly greater minimal periods than w[i.. j].

We say that an alphabet is general and ordered if it is 
totally ordered and the only allowed operation is compar-
ing two letters. Hereafter, w denotes the input string of 
length n over a general ordered alphabet.

In the longest common extension (LCE) problem one has 
to preprocess w for queries LCE(i, j) returning for given 
positions i and j of w the length of the longest common 
prefix of the suffixes w[i..n] and w[ j..n]. It is well known 
that one can perform the LCE queries in constant time after 
preprocessing w in O (n logσ) time, where σ is the num-
ber of distinct letters in w (e.g., see [7]). It turns out that 
the time consumed by the LCE queries is dominating in 
the algorithm of [1]; namely, one can prove the following 
lemma.

Lemma 1. (See [1, Alg. 1 and Sect. 4.2].) Suppose we can answer 
in an online fashion any sequence of O (n) LCE queries on w in 
O ( f (n)) time for some function f (n); then we can find all runs 
of w in O (n + f (n)) time.

In what follows we describe an algorithm that com-

putes O (n) LCE queries in O (n log
2
3 n) time and thus prove 

theorem using Lemma 1. The key notion in our construc-
tion is a difference cover. Let k ∈N. A set D ⊂ [0..k) is called 
a difference cover of [0..k) if for any x ∈ [0..k), there exist 
y, z ∈ D such that y − z ≡ x (mod k). Clearly |D| ≥ √

k. 
Conversely, for any k ∈ N, there is a difference cover of 
[0..k) with O (

√
k) elements: for example, the difference 

cover [0..
√k�] ∪ {2
√k�, 3
√k�, . . .}, which is depicted in 
Fig. 1. For further discussions and estimations of minimal 
difference covers, see [4,15,16].

Fig. 1. Simple difference cover of [0..k) with k = 18.

Example. The set D = {1, 2, 4} is a difference cover 
of [0..5).

x 0 1 2 3 4
y, z 1,1 2,1 1,4 4,1 1,2

Our algorithm utilizes the following interesting prop-
erty of difference covers.

Lemma 2. (See [3].) Let D be a difference cover of [0..k). For any 
integers i, j, there exists d ∈ [0..k) such that (i + d) mod k ∈ D
and ( j + d) mod k ∈ D.

3. Longest common extensions

At the beginning, our algorithm fixes an integer τ
(the precise value of τ is given below). Let D be a dif-
ference cover of [0..τ 2) of size O (τ ). Denote M = {i ∈
[1..n]: (i mod τ 2) ∈ D}. Obviously, we have |M| = O ( n

τ ). 
Our algorithm builds in O ( n

τ (τ 2 + log n)) = O ( n
τ log n +nτ )

time a data structure that can calculate LCE(x, y) in con-
stant time for any x, y ∈ M . To compute LCE(x, y) for arbi-
trary x, y ∈ [1..n], we simply compare w[x..n] and w[y..n]
from left to right until we reach positions x + d and y + d
such that x + d ∈ M and y + d ∈ M , and then we ob-
tain LCE(x, y) = d + LCE(x + d, y + d) in constant time. 
By Lemma 2, we have d < τ 2 and therefore, the value 
LCE(x, y) can be computed in O (τ 2) time. Thus, our al-
gorithm can execute any sequence of O (n) LCE queries 
in O ( n

τ logn + nτ 2) time. Putting τ = log
1
3 n�, we obtain 

O ( n
τ log n + nτ 2) = O (n log

2
3 n). Now it suffices to describe 

the data structure answering the LCE queries on the posi-
tions from M .

Let i1, i2, . . . , im be the sequence of all positions from 
M in the increasing lexicographical order of the corre-
sponding suffixes w[i1..n], w[i2..n], . . . , w[im..n]. Our algo-
rithm builds a longest common prefix array lcp[1..m−1] such 
that lcp[ j] = LCE(i j, i j+1) for j ∈ [1..m) and a sparse suffix 
array sa[1..n] such that isa[x] = x for x ∈ M and sa[x] = 0
for x /∈ M . Obviously LCE(i j, ik) = min{lcp[ j], lcp[ j+1], . . . ,
lcp[k−1]} for j < k. Based on this observation, we equip 
the lcp array with the range minimum query (RMQ) struc-
ture [5] that allows to compute min{lcp[ j], lcp[ j+1], . . . ,
lcp[k−1]} for any j < k in O (1) time. Now, to answer 
LCE(x, y) for x, y ∈ M , we first obtain j = sa[x] and k =
sa[y] and then answer LCE(i j, ik) using the RMQ structure 
on the lcp array. Since the RMQ structure can be built in 
O (n) time [5], it remains to describe how to construct lcp
and sa.

In general our construction is similar to that of [10]. 
We use the fact that the set M has “period” τ 2, i.e., for 
any x ∈ M , we have x + τ 2 ∈ M provided x + τ 2 ≤ n. 
For simplicity, assume that w[n] is a special letter that is 
smaller than any other letter in w . Our algorithm itera-
tively inserts the suffixes {w[x..n]: x ∈ M} in the arrays lcp
and sa from right to left. Suppose, for some k ∈ M , we 
have already inserted in lcp and sa the suffixes w[x..n] for 
all x ∈ M ∩ (k..n]. More precisely, denote by i′1, i′2, . . . , i′m′
the sequence of all positions M ∩ (k..n] in the increas-
ing lexicographical order of the corresponding suffixes 
w[i′1..n], w[i′2..n], . . . , w[i′m′ ..n]; we suppose that lcp[ j] =
LCE(i′j, i

′
j+1) for j ∈ [1..m′), i′sa[x] = x for x ∈ M ∩ (k..n], and 

sa[x] = 0 for x /∈ M ∩ (k..n]. We are to insert the suffix 
w[k..n] in lcp and sa. In order to perform the insertions 
efficiently, during the construction, the arrays lcp and sa



Download English Version:

https://daneshyari.com/en/article/427066

Download Persian Version:

https://daneshyari.com/article/427066

Daneshyari.com

https://daneshyari.com/en/article/427066
https://daneshyari.com/article/427066
https://daneshyari.com

