Computing runs on a general alphabet

Dmitry Kosolobov
Ural Federal University, Ekaterinburg, Russia

A R T I CLE IN F O

Article history:

Received 6 July 2015
Received in revised form 24 November 2015
Accepted 26 November 2015
Available online 30 November 2015
Communicated by Ł. Kowalik

Keywords:

Runs
General alphabet
Algorithms
Repetitions

Abstract

We describe a RAM algorithm computing all runs (maximal repetitions) of a given string of length n over a general ordered alphabet in $O\left(n \log ^{\frac{2}{3}} n\right)$ time and linear space. Our algorithm outperforms all known solutions working in $\Theta(n \log \sigma)$ time provided $\sigma=n^{\Omega(1)}$, where σ is the alphabet size. We conjecture that there exists a linear time RAM algorithm finding all runs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions in strings are fundamental objects in both stringology and combinatorics on words. In some sense the notion of run, introduced by Main [13], allows to grasp the whole repetitive structure of a given string in a relatively simple form. Informally, a run of a string is a maximal periodic substring that is at least as long as twice its minimal period (the precise definition follows). In [9] Kolpakov and Kucherov showed that any string of length n contains O (n) runs and proposed an algorithm computing all runs in linear time on an integer alphabet $\left\{0,1, \ldots, n^{0(1)}\right\}$ and $O(n \log \sigma)$ time on a general ordered alphabet, where σ is the number of distinct letters in the input string. Recently, Bannai et al. described another interesting algorithm computing all runs in $O(n \log \sigma)$ time [1]. Modifying the approach of [1], we prove the following theorem.

Theorem. For a general ordered alphabet, there is an algorithm that computes all runs in a string of length n in $O\left(n \log ^{\frac{2}{3}} n\right)$ time and linear space.

[^0]This is in contrast to the result of Main and Lorentz [14] who proved that any algorithm deciding whether a string over a general unordered alphabet has at least one run requires $\Omega(n \log n)$ comparisons in the worst case.

Our algorithm outperforms all known solutions when the number of distinct letters in the input string is sufficiently large (e.g., $\sigma=n^{\Omega(1)}$). It should be noted that the algorithm of Kolpakov and Kucherov can hardly be improved in a similar way since it strongly relies on a structure (namely, the Lempel-Ziv decomposition) that cannot be computed in $o(n \log \sigma)$ time on a general ordered alphabet (see [11]).

Based on some theoretical observations of [11], we conjecture that one can further improve our result.

Conjecture. For a general ordered alphabet, there is a linear time algorithm computing all runs.

2. Preliminaries

A string of length n over an alphabet Σ is a map $\{1,2, \ldots, n\} \mapsto \Sigma$, where n is referred to as the length of w, denoted by $|w|$. We write $w[i]$ for the i th letter of w and $w[i . . j]$ for $w[i] w[i+1] \ldots w[j]$. A string u is a substring (or a factor) of w if $u=w[i . . j]$ for some i and j. The
pair (i, j) is not necessarily unique; we say that i specifies an occurrence of u in w. A string can have many occurrences in another string. A substring $w[1 . . j]$ (respectively, $w[i . . n]$) is a prefix (respectively, suffix) of w. An integer p is a period of w if $0<p \leq|w|$ and $w[i]=w[i+p]$ for all $i=1, \ldots,|w|-p ; p$ is the minimal period of w if p is the minimal positive integer that is a period of w. For integers i and j, the set $\{k \in \mathbb{Z}: i \leq k \leq j\}$ (possibly empty) is denoted by $[i . . j]$. Denote $[i . . j)=[i . . j-1]$ and $(i . . j]=[i+1 . . j]$.

A run of a string w is a substring $w[i . . j]$ whose period is at most half of the length of $w[i . . j]$ and such that both substrings $w[i-1 . . j]$ and $w[i . . j+1]$, if defined, have strictly greater minimal periods than $w[i . . j]$.

We say that an alphabet is general and ordered if it is totally ordered and the only allowed operation is comparing two letters. Hereafter, w denotes the input string of length n over a general ordered alphabet.

In the longest common extension (LCE) problem one has to preprocess w for queries $\operatorname{LCE}(i, j)$ returning for given positions i and j of w the length of the longest common prefix of the suffixes $w[i . . n]$ and $w[j . . n]$. It is well known that one can perform the $L C E$ queries in constant time after preprocessing w in $O(n \log \sigma)$ time, where σ is the number of distinct letters in w (e.g., see [7]). It turns out that the time consumed by the LCE queries is dominating in the algorithm of [1]; namely, one can prove the following lemma.

Lemma 1. (See [1, Alg. 1 and Sect. 4.2].) Suppose we can answer in an online fashion any sequence of $O(n) L C E$ queries on w in $O(f(n))$ time for some function $f(n)$; then we can find all runs of w in $O(n+f(n))$ time.

In what follows we describe an algorithm that computes $O(n) L C E$ queries in $O\left(n \log ^{\frac{2}{3}} n\right)$ time and thus prove theorem using Lemma 1 . The key notion in our construction is a difference cover. Let $k \in \mathbb{N}$. A set $D \subset[0 . . k)$ is called a difference cover of $[0 . . k)$ if for any $x \in[0 . . k)$, there exist $y, z \in D$ such that $y-z \equiv x(\bmod k)$. Clearly $|D| \geq \sqrt{k}$. Conversely, for any $k \in \mathbb{N}$, there is a difference cover of [0..k) with $O(\sqrt{k})$ elements: for example, the difference cover $[0 . .\lfloor\sqrt{k}\rfloor] \cup\{2\lfloor\sqrt{k}\rfloor, 3\lfloor\sqrt{k}\rfloor, \ldots\}$, which is depicted in Fig. 1. For further discussions and estimations of minimal difference covers, see $[4,15,16]$.

Fig. 1. Simple difference cover of $[0 . . k)$ with $k=18$.

Example. The set $D=\{1,2,4\}$ is a difference cover of [0..5).

x	0	1	2	3	4
y, z	1,1	2,1	1,4	4,1	1,2

Our algorithm utilizes the following interesting property of difference covers.

Lemma 2. (See [3].) Let D be a difference cover of [0..k). For any integers i, j, there exists $d \in[0 . . k)$ such that $(i+d) \bmod k \in D$ and $(j+d) \bmod k \in D$.

3. Longest common extensions

At the beginning, our algorithm fixes an integer τ (the precise value of τ is given below). Let D be a difference cover of $\left[0 . . \tau^{2}\right.$) of size $O(\tau)$. Denote $M=\{i \in$ [1..n]: $\left.\left(i \bmod \tau^{2}\right) \in D\right\}$. Obviously, we have $|M|=O\left(\frac{n}{\tau}\right)$. Our algorithm builds in $O\left(\frac{n}{\tau}\left(\tau^{2}+\log n\right)\right)=O\left(\frac{n}{\tau} \log n+n \tau\right)$ time a data structure that can calculate $\operatorname{LCE}(x, y)$ in constant time for any $x, y \in M$. To compute $\operatorname{LCE}(x, y)$ for arbitrary $x, y \in[1 . . n]$, we simply compare $w[x . . n]$ and $w[y . . n]$ from left to right until we reach positions $x+d$ and $y+d$ such that $x+d \in M$ and $y+d \in M$, and then we obtain $\operatorname{LCE}(x, y)=d+\operatorname{LCE}(x+d, y+d)$ in constant time. By Lemma 2, we have $d<\tau^{2}$ and therefore, the value $\operatorname{LCE}(x, y)$ can be computed in $O\left(\tau^{2}\right)$ time. Thus, our algorithm can execute any sequence of $O(n)$ LCE queries in $O\left(\frac{n}{\tau} \log n+n \tau^{2}\right)$ time. Putting $\tau=\left\lceil\log ^{\frac{1}{3}} n\right\rceil$, we obtain $O\left(\frac{n}{\tau} \log n+n \tau^{2}\right)=O\left(n \log ^{\frac{2}{3}} n\right)$. Now it suffices to describe the data structure answering the LCE queries on the positions from M.

Let $i_{1}, i_{2}, \ldots, i_{m}$ be the sequence of all positions from M in the increasing lexicographical order of the corresponding suffixes $w\left[i_{1} . . n\right], w\left[i_{2} . . n\right], \ldots, w\left[i_{m} . . n\right]$. Our algorithm builds a longest common prefix array $\operatorname{Icp}[1 . . m-1]$ such that $\operatorname{Icp}[j]=\operatorname{LCE}\left(i_{j}, i_{j+1}\right)$ for $j \in[1 . . m)$ and a sparse suffix array $\mathrm{sa}[1 . . n]$ such that $i_{\mathrm{sa}[x]}=x$ for $x \in M$ and $\mathrm{sa}[x]=0$ for $x \notin M$. Obviously $\operatorname{LCE}\left(i_{j}, i_{k}\right)=\min \{\operatorname{Icp}[j], \operatorname{Icp}[j+1], \ldots$, $\operatorname{Icp}[k-1]\}$ for $j<k$. Based on this observation, we equip the Icp array with the range minimum query ($R M Q$) structure [5] that allows to compute min\{lcp[j], $\operatorname{Icp}[j+1], \ldots$, $\operatorname{lcp}[k-1]\}$ for any $j<k$ in $O(1)$ time. Now, to answer $\operatorname{LCE}(x, y)$ for $x, y \in M$, we first obtain $j=\mathrm{sa}[x]$ and $k=$ $\mathrm{sa}[y]$ and then answer $\operatorname{LCE}\left(i_{j}, i_{k}\right)$ using the RMQ structure on the Icp array. Since the RMQ structure can be built in $O(n)$ time [5], it remains to describe how to construct Icp and sa.

In general our construction is similar to that of [10]. We use the fact that the set M has "period" τ^{2}, i.e., for any $x \in M$, we have $x+\tau^{2} \in M$ provided $x+\tau^{2} \leq n$. For simplicity, assume that $w[n]$ is a special letter that is smaller than any other letter in w. Our algorithm iteratively inserts the suffixes $\{w[x . . n]: x \in M\}$ in the arrays Icp and sa from right to left. Suppose, for some $k \in M$, we have already inserted in Icp and sa the suffixes $w[x . . n]$ for all $x \in M \cap(k . n]$. More precisely, denote by $i_{1}^{\prime}, i_{2}^{\prime}, \ldots, i_{m^{\prime}}^{\prime}$ the sequence of all positions $M \cap(k . n]$ in the increasing lexicographical order of the corresponding suffixes $w\left[i_{1}^{\prime} . . n\right], w\left[i_{2}^{\prime} . . n\right], \ldots, w\left[i_{m^{\prime}}^{\prime} . . n\right]$; we suppose that $\operatorname{Icp}[j]=$ $\operatorname{LCE}\left(i_{j}^{\prime}, i_{j+1}^{\prime}\right)$ for $j \in\left[1 . . m^{\prime}\right), i_{\mathrm{sa}[x]}^{\prime}=x$ for $x \in M \cap(k . . n]$, and $\mathrm{sa}[x]=0$ for $x \notin M \cap(k . . n]$. We are to insert the suffix $w[k . n]$ in Icp and sa. In order to perform the insertions efficiently, during the construction, the arrays Icp and sa

https://daneshyari.com/en/article/427066

Download Persian Version:

https://daneshyari.com/article/427066

Daneshyari.com

[^0]: E-mail address: dkosolobov@mail.ru.

