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We consider the single machine scheduling problem with release dates and job rejection 
with an objective of minimizing the makespan of the job schedule plus the total rejection 
penalty of the rejected jobs. Zhang et al. [6] have presented a 2-approximation algorithm 
with an O (n2) complexity for this problem and an exact algorithm with an O (n3)

complexity for the special case with identical job processing times. In this note, we show 
that the 2-approximation algorithm developed by Zhang et al. [6] can be implemented in 
O (n logn) time. We also develop a new exact algorithm with an improved complexity of 
O (n2 log n) for the special case with identical job processing times. The second algorithm 
can be easily extended to solve the parallel-machine case with the same running time 
complexity, which answers an open question recently raised by Zhang and Lu [5].

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this note, we consider the following single-machine 
scheduling problem with release dates and job rejection 
decisions: There are a single machine and a set of n jobs 
J = { J1, J2, . . . , Jn}. Each job J j ∈ J has a processing time 
p j ≥ 0, a release date r j ≥ 0, and a rejection penalty 
w j > 0. Job J j is either rejected, which incurs a rejection 
penalty w j , or accepted and processed by the machine at 
or after its release date r j . The machine can process at 
most one job at a time, and preemption is not allowed dur-
ing job processing. The objective is to determine a subset 
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of jobs to be accepted and processed on the machine, so as 
to minimize the makespan of the job schedule plus the to-
tal rejection penalty of all rejected jobs. This problem was 
introduced by Zhang et al. [6]. Following their notation, 
this problem is denoted as 1|r j, reject|Cmax + ∑

J j∈R w j , 
and the special case with identical job processing times 
is denoted as 1|r j, p j = p, reject|Cmax + ∑

J j∈R w j , where 
R is the set of rejected jobs.

Zhang et al. [6] have shown the NP-hardness of prob-
lem 1|r j, reject|Cmax + ∑

J j∈R w j and provided several ex-
act and approximation algorithms for the problem. One of 
their main results is a 2-approximation algorithm with an 
O (n2) running time for this problem. Another main result 
is an exact algorithm with a running time of O (n(rmax +
P )), where rmax = max j{r j} and P = ∑

j p j , and this ex-

act algorithm has an O (n3) running time when applied 
to the special case 1|r j, p j = p, reject|Cmax + ∑

J j∈R w j . 
Although a lot of studies on related topics have been pub-
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lished recently (see [3] and [4] for recent reviews), to the 
best of our knowledge, no improved algorithms for these 
two specific problems have appeared in the literature, ex-
cept for the recent work by He et al. [1] (see Remark 1
below). In the following sections, we first show that the 
2-approximation algorithm developed by Zhang et al. [6]
for problem 1|r j, reject|Cmax + ∑

J j∈R w j can be imple-
mented in O (n log n) time. We then develop a new exact 
algorithm with a reduced complexity of O (n2 log n) for 
problem 1|r j, p j = p, reject|Cmax + ∑

J j∈R w j . This algo-
rithm can be extended to solve the parallel machine prob-
lem P |r j, p j = p, reject|Cmax + ∑

J j∈R w j , which answers 
an open question recently raised by Zhang and Lu [5].

2. Faster approximation algorithm for 
1|r j, reject|Cmax + ∑

J j∈R w j

Zhang et al. [6] have developed an approximation 
algorithm with an O (n2) complexity for problem 1|r j,

reject|Cmax +∑
J j∈R w j . Denoting p(S) = ∑

J j∈S p j for any 
job subset S , their algorithm is given as follows:

Algorithm A. (See Zhang et al. [6].)

Step 1. For each t ∈ {r j | j = 1, 2, . . . , n}, we divide the 
jobs into three sets such that S1(t) = { J j | r j ≤
t and p j ≤ w j}, S2(t) = { J j | r j ≤ t and p j > w j}, 
and S3(t) = { J j | r j > t}.

Step 2. Accept all jobs in S1(t) and reject the jobs in 
S2(t) ∪ S3(t). Assign the accepted jobs to be pro-
cessed in time interval [t, t + p(S1(t))] on the ma-
chine. The resulting schedule is denoted by π(t).

Step 3. Let Z(t) be the value of the objective function 
for each π(t). Among all the schedules obtained 
above, select the one with the minimum Z(t)
value.

Zhang et al. [6, Thm. 4.1] have shown that Algorithm A
has a performance ratio of 2. In their proof, they have im-
plicitly assumed that at least one job must be accepted. 
If we allow the solution to reject all jobs, then Algo-
rithm A does not have a constant performance ratio. To 
see this, consider an example with n = 1, p1 = 1, w1 = 2, 
and r1 = M , where M is a large number. In this example, 
S1(M) = { J1} and S2(M) = S3(M) = ∅. The only schedule 
generated by Steps 1–2 is π(M), which processes job J1 in 
the time interval [M, M +1]. The objective value of this so-
lution is M + 1. On the other hand, the optimal solution is 
to reject J1, and has an objective value of 2. Thus, the per-
formance ratio of the solution generated by Algorithm A is 
M+1

2 , which approaches infinity as M → ∞. To ensure that 
the algorithm can also handle the case where all jobs are 
rejected, we consider a modified version of Algorithm A by 
adding the following step.

Step 4. Compute W = ∑n
j=1 w j . If the minimum Z(t)

value obtained by Step 3 is greater than W , then 
reject all jobs.

We denote this modified algorithm as Algorithm A1. It is 
easy to check that after adding Step 4 to Algorithm A, 
the proof of Theorem 4.1 in [6] is valid even if the opti-
mal solution is to reject all jobs. Hence, Algorithm A1 is a 
2-approximation algorithm.

In the following, we show that Algorithm A1 can be 
implemented in O (n log n) time. We first re-index the jobs 
such that r1 ≤ r2 ≤ · · · ≤ rn . This requires O (n log n) time. 
Denote Pk = p(S1(rk)) and W̄k = ∑

J j∈ J\S1(rk)
w j , for k =

1, 2, . . . , n. It is easy to check that Z(rk) = rk + Pk + W̄k . 
Next, we show that the values of Z(r1), Z(r2), . . . , Z(rn)

can be computed recursively in O (n) time.
Consider any k = 2, 3, . . . , n. If pk > wk , then S1(rk) =

S1(rk−1), Pk = Pk−1, W̄k = W̄k−1, and therefore Z(rk) =
rk + Pk + W̄k = rk + Pk−1 + W̄k−1 = rk + Z(rk−1) − rk−1. 
If pk ≤ wk , then S1(rk) = S1(rk−1) ∪ { Jk}, Pk = Pk−1 + pk , 
W̄k = W̄k−1 − wk , and therefore Z(rk) = rk + Pk + W̄k =
rk + Pk−1 + pk + W̄k−1 − wk = rk + Z(rk−1) −rk−1 + pk − wk . 
Thus, in both cases,

Z(rk) = rk + Z(rk−1) − rk−1 + min{pk − wk,0}. (1)

Clearly, Z(r1) can be determined in O (n) time. By repeat-
edly applying equation (1), the values of Z(r2), Z(r3), . . . ,
Z(rn) can be computed in O (n) time. In other words, 
when the jobs are indexed in nondecreasing release 
dates, Z(r1), Z(r2), . . . , Z(rn) can be obtained without 
determining the sets S1(t), S2(t), and S3(t) for t =
r1, r2, . . . , rn . After computing Z(r1), Z(r2), . . . , Z(rn), we 
determine S1(rk′ ), where k′ = arg mink=1,...,n{Z(rk)}. The 
schedule in Step 3 is obtained by accepting the jobs in 
S1(rk′ ) and assigning them to time interval [rk′ , rk′ + Pk′ ]. 
This step, as well as Step 4, requires O (n) time. Hence, we 
have the following result.

Theorem 1. Algorithm A1 can be implemented in O (n logn)

time.

To illustrate this computation process, consider an 
example with n = 5, (r1, r2, r3, r4, r5) = (0, 2, 6, 10, 16), 
(p1, p2, p3, p4, p5) = (7, 1, 10, 4, 3), and (w1, w2, w3, w4,

w5) = (8, 4, 12, 3, 7). In this example, P1 = 7, W̄1 = 26, 
and therefore Z(r1) = r1 + P1 + W̄1 = 33. By equation (1),

Z(r2) = r2 + Z(r1) − r1 + min{p2 − w2,0}
= 2 + 33 − 0 + min{−3,0} = 32;

Z(r3) = r3 + Z(r2) − r2 + min{p3 − w3,0}
= 6 + 32 − 2 + min{−2,0} = 34;

Z(r4) = r4 + Z(r3) − r3 + min{p4 − w4,0}
= 10 + 34 − 6 + min{1,0} = 38;

Z(r5) = r5 + Z(r4) − r4 + min{p5 − w5,0}
= 16 + 38 − 10 + min{−4,0} = 40.

Thus, k′ = 2, and the solution generated by Step 3 is to ac-
cept the jobs in S1(r2) = { J1, J2}, assign them to the time 
interval [r2, r2 + P2] = [2, 10], and reject the other jobs. 
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