
Information Processing Letters 116 (2016) 526–531

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Online parallel-batch scheduling to minimize total weighted 

completion time on single unbounded machine ✩

Yang Fang a,b, Xiwen Lu c,∗
a Shanghai Zhenhua Heavy Industries Co., Ltd., Shanghai, China
b Antai College of Economics and Management, Shanghai JiaoTong University, Shanghai, China
c Department of Mathematics, School of Science, East China University of Science and Technology, Shanghai, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 March 2015
Received in revised form 11 March 2016
Accepted 24 March 2016
Available online 29 March 2016
Communicated by X. Wu

Keywords:
Parallel-batch scheduling
Online algorithm
Analysis of algorithms
Unbounded machine
Total weighted completion time

The online parallel-batch scheduling problem on single unbounded machine to minimize 
total weighted job completion time is studied. For the general case of processing time, 
we give an online algorithm with competitive ratio 

√
5 + 1. When all jobs have identical 

processing times, we provide an optimal online algorithm.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In classical machine scheduling problems, a machine 
can process at most one job at a time. Motivated by the 
burn-in operations in the final testing stage of semiconduc-
tor manufacturing, Lee et al. [1] introduced parallel-batch 
machine scheduling problem. A parallel-batch machine is a 
machine that can process up to B jobs simultaneously as a 
batch. All jobs in one batch start and complete at the same 
time, and the processing time of one batch is equal to the 
longest processing time of the jobs in it. Once a batch 
starts to be processed, we can not stop it. The parallel-
batch machine could be bounded B < +∞, or unbounded 
B = +∞.

In this paper, we consider the online parallel-batch 
scheduling problem on an unbounded parallel-batch ma-

✩ This research was supported by National Natural Science Foundation 
of China (No. 11371137).

* Corresponding author.
E-mail address: xwlu@ecust.edu.cn (X. Lu).

chine to minimize total weighted job completion time. 
Jobs arrive overtime. Information of jobs and the number 
of jobs n are not known in advance. Once a job J j ar-
rives, its release time r j , processing time p j and weight 
w j become known. As jobs arrive, we have to decide to 
process them or to wait for more information. Let C j be 
the completion time of job J j on the batch machine. Our 
goal is to minimize the total weighted completion time, 
i.e. 

∑
w j C j . This problem can be described as 1|r j, B =

+∞, online| ∑ w j C j .
The standard measure of quality of online algorithms is 

competitive ratio. For minimum optimal problem, an on-
line algorithm is called ρ-competitive if, for any instance, 
the cost output obtained by the online algorithm is at most 
ρ times the optimal off-line cost. The competitive ratio of 
an online algorithm is defined as the infimum of all val-
ues ρ . Moreover, if there is not an online algorithm with 
competitive ratio less than L for some problem, we call the 
lower bound of this problem is L. If the competitive ratio 
ρ of an algorithm matches the lower bound, i.e. ρ = L, we 
call the algorithm optimal, or best possible.

http://dx.doi.org/10.1016/j.ipl.2016.03.010
0020-0190/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2016.03.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:xwlu@ecust.edu.cn
http://dx.doi.org/10.1016/j.ipl.2016.03.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.03.010&domain=pdf


Y. Fang, X. Lu / Information Processing Letters 116 (2016) 526–531 527

In last two decades, many of the researchers focused 
their attention on the objective functions of 

∑
C j and ∑

w j C j . For the problem on single machine, Hoogeveen 
and Vestjens [2] showed that no deterministic online al-
gorithm could have a competitive ratio less than 2 even 
if all jobs have identical weights. For the case of iden-
tical weights, Hoogeveen and Vestjens [2], and Lu et al. 
[3] presented several optimal algorithms with competi-
tive ratio 2. For the general case, Anderson and Potts 
[4] obtained an optimal algorithm with competitive ra-
tio 2.

On single parallel-batch machine, Chen et al. [5] gave 
a 10/3-competitive algorithm for the problem 1|r j, B =
+∞, online| ∑ w j C j by using the method of Greedy In-
terval, and presented a (4 + ε)-competitive algorithm for 
the bounded case 1|r j, B < +∞, online| ∑ w j C j . On m
parallel-batch machines, Cao et al. [6] considered the on-
line scheduling of equal length jobs with precedence con-
straint. For the unbounded batching version, they provided 
the lower bound and a best possible algorithm. For the 
bounded batching case with identical weights, they pre-
sented a 2-competitive algorithm.

There are several results for online overtime scheduling 
problems on single parallel-batch machine. Recently, Tian 
et al. [7] gave a literature review. When objective function 
is minimizing makespan, Deng et al. [8] and Zhang et al. 
[9] proved that no online algorithm could get its competi-
tive ratio less than (

√
5 + 1)/2 even if all jobs’ processing 

times are same. For the unbounded case, Deng et al. [8]
and Zhang et al. [9] also independently gave the same on-
line algorithm with competitive ratio matching the lower 
bound. Poon and Yu [10] provided a more general class 
of algorithms which also have optimal competitive ratio. 
Thus, the unbounded capacity case is finished. However, 
there is a long way to solve the bounded case. According 
to our literature reviewing, for the general case on single 
bounded machine, the known best competitive ratio is 2. 
Poon and Yu [11] presented a class of FBLPT (full batch 
longest processing time)-based algorithms with competi-
tive ratio 2. They also obtained a 7/4-competitive algo-
rithm for the case B = 2. When all jobs have their process-
ing times in [p, (1 +φ)p] (p > 0 and φ = (

√
5−1)/2), Fang 

et al. [12] provided a class of optimal algorithms. Fu et al. 
[13] investigated the unbounded model with restarts. They 
proved that no online algorithm has a competitive ratio 
less than (5 −√

5)/2, and they presented a 1.5-competitive 
algorithm. Later, Yuan et al. [14] designed a best possible 
online algorithm.

In this paper, we further consider the online batch 
parallel-scheduling problem 1|r j, B = +∞, online| ∑ w j C j . 
For the general case of processing time, we give an online 
algorithm with competitive ratio 

√
5 + 1. When all jobs 

have equal processing times, an optimal algorithm is pro-
vided.

Throughout the paper, we denote by σ the schedule 
produced by the algorithm and by π an optimal schedule.

2. General case

For the problem 1|r j, B = +∞, online| ∑ w j C j , Chen et 
al. [5] designed an online algorithm according to the idea 

of Greedy Interval. In their algorithm, the start time of 
batch processing is set at t = 2i (i = 0, 1, · · ·). Based on 
the idea of shift and interval, we can obtain a better algo-
rithm and prove that the competitive ratio of the algorithm 
is 

√
5 + 1.

Before giving the algorithm, we introduce some no-
tations. Let τ = (1 + φ)/2 ≈ 0.809. Denote that r̃ j =
max{r j, p j}. When a job J j arrives, we set r̃ j before which 
the job is not available to be processed. Then for each job 
J j considered to be processed at time t , we have t ≥ r̃ j . 
Once the machine is idle at time t , we consider to process 
jobs. The time t is named decision time. Let U (t) be the set 
of unscheduled jobs available at decision time t , satisfying 
U (t) = { J j |r̃ j ∈ (t′, t]}, where t′ is the last decision time. 
Divide U (t) into two parts, X(t) and Y (t),

X(t) = { J j|p j ≤ φt, J j ∈ U (t)},
Y (t) = { J j|p j > φt, J j ∈ U (t)},
where φ =

√
5−1
2 ≈ 0.618.

Let C(t) be the job set chosen to be processed at time t , 
and D(t) be the set of unscheduled jobs of U (t). For any 
job set J , let p( J ) be the largest processing time in J . Let 
W X (t), W Y (t), W (t) be the sum of job’s weight in X(t), 
Y (t), U (t), respectively. Without loss of generality, we as-
sume that the first job arrives at zero and its processing 
time is greater than zero.

Algorithm H:

Step 0: Set t = 0, t′ = 0, D(t′) = ∅.
Step 1: If the machine is idle at time t , goto Step 2. Other-
wise, wait.
Step 2: If at time t , U (t) �= ∅, then goto Step 3. Otherwise, 
goto Step 4.
Step 3: Make decision by the ratio of W X (t)/W (t).

Step 3.1. If W X (t)/W (t) ≥ τ , then let C(t) = X(t) ∪ D(t′), 
and start to process C(t) as one batch immediately. 
Set t′ := t , t := t + p(C(t)), D(t′) = Y (t′), and return to 
Step 2.
Step 3.2. If W X (t)/W (t) < τ , then let C(t) = U (t) ∪ D(t′), 
and start to process C(t) as one batch immediately. Set 
t′ := t , t := t + p(C(t)), D(t′) = ∅, and return to Step 2.

Step 4: If D(t′) �= ∅, process D(t′) as one batch immedi-
ately. Set D(t′) = ∅, t = t + p(D(t′)), and return to Step 2. 
Otherwise, wait unit next time when U (t) �= ∅, and return 
to Step 2.

Denote all decision times by t1, t2, · · · , tk, · · ·. Obviously, 
U (tk) = { J j |r̃ j ∈ (tk−1, tk]}, where k ≥ 1 and t0 = 0. Be-
cause every job is included in one of these job sets, ∑

w j C j(σ ) = ∑
k

∑
j∈U (tk)

w j C j(σ ). Thus we just need to an-

alyze each U (tk). Let the three types of batches produced 
by Step 3.1, 3.2 and 4 of Algorithm H be T1, T2 and T3, 
respectively. Denote the batch starting to be processed at 
time tk by Bk(σ ). Note that if the type of Bk(σ ) is T3, then 
U (tk) = ∅.

Lemma 1. If for any small positive number ε > 0, the batch ma-
chine is idle at time tk − ε in σ , then



Download English Version:

https://daneshyari.com/en/article/427378

Download Persian Version:

https://daneshyari.com/article/427378

Daneshyari.com

https://daneshyari.com/en/article/427378
https://daneshyari.com/article/427378
https://daneshyari.com

