Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Correlation lower bounds from correlation upper bounds

Shiteng Chen^a, Periklis A. Papakonstantinou^{b,*}

^a IIIS, Tsinghua University, China

^b MSIS, Rutgers Business School, Rutgers University, United States

ARTICLE INFO

Article history: Received 29 July 2015 Accepted 27 March 2016 Available online 7 April 2016 Communicated by R. Uehara

Keywords: Computational complexity Circuit complexity Correlation Composite modulus

ABSTRACT

We prove a $2^{-O(\frac{n}{d(n)})}$ lower bound on the correlation of $MOD_m \circ AND_{d(n)}$ and MOD_r , where m, r are positive integers. This is the first non-trivial lower bound on the correlation of such functions for arbitrary *m*, *r*. Our motivation is the question posed by Green et al., to which the $2^{-O(\frac{n}{d(n)})}$ bound is a partial negative answer. We first show a $2^{-\Omega(n)}$ correlation upper bound that implies a $2^{\Omega(n)}$ circuit size lower bound. Then, through a reduction we obtain a $2^{-O(\frac{n}{d(n)})}$ correlation lower bound. In fact, the $2^{\Omega(n)}$ size lower bound is for MAJ \circ ANY_{0(n)} \circ AND \circ MOD_r \circ AND_{O(1)} circuits, which is of independent interest.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the power of small-depth circuits that have MOD_m gates, in addition to the usual boolean gates, is one of the most fascinating areas of computational complexity. MOD_m is the boolean function that outputs 1 if and only if the number of 1s in its input is a multiple of m. The computational limitations of MOD_m gates for prime m = p is well-understood since 1980s through the seminal works of Razborov [14] and Smolensky [15]. They proved that no constant depth polynomial size circuit with $\{MOD_n, AND, OR, NOT\}$ gates can compute the MOD_a function, for primes $p \neq q$. Smolensky further conjectured that the same holds true for composite moduli, which remains an important open question.

A main tool in the study of small-depth circuit lower bounds is via correlation upper bounds [2,3,9,11,13,8,7]. The notion of correlation quantifies the distance of two functions and was introduced by Hajnal et al. [13]; see p. 538 for definitions. The smaller the correlation between

Corresponding author.

periklis.research@gmail.com (P.A. Papakonstantinou).

http://dx.doi.org/10.1016/j.ipl.2016.03.012 0020-0190/© 2016 Elsevier B.V. All rights reserved.

E-mail addresses: shitengchen@gmail.com (S. Chen),

the circuit and a function the larger the circuit size to compute this function.

In this note we show a limitation of the correlation method, aiming to answer the question of Green et al. [11]. They asked whether it is possible to prove correlation upper bounds that yield size lower bounds for circuits of the form $MOD_m \circ AND_{\omega(\log n)}$, which correspond to functions $MOD_m(P(x))$, for a polynomial P of degree $\omega(\log n)$. We show a correlation lower bound between MOD_r and $MOD_m(P(x))$ where $m \in \mathbb{Z}$ is anything and P is of any degree. Previously, Green [10] and Viola [17] discussed correlation lower bounds that differ from ours. Viola's argument is for the correlation between symmetric functions and polynomials of degree \sqrt{n} (i.e. high degree) over GF(2) (in fact, GF(p) for prime p), whereas Green's argument is only about MOD₂ and MOD₃.

Our goal is to lower bound the correlation between MOD_r and any circuit C_{simple} with a single layer of MOD_m . We prove this in two steps. In the first step we obtain a correlation upper bound but for more complicated circuits $C_{multi-laver}$, which in particular includes circuits with two MOD layers. This correlation upper bound implies a circuit size *lower bound* for $C_{multi-laver}$. In the second step we do a reduction to obtain the lower bound on the correlation of a specific C_{simple} and MOD_r .

CrossMark

There is considerable success in using correlation upper bounds in obtaining circuit lower bounds. In our argument we need to lower bound the size of circuits of the form $MAJ \circ ANY_{o(n)} \circ AND \circ MOD_r \circ AND_{d(n)}$, for which no previous lower bounds were known.

Hajnal et al. [13] showed the discriminator lemma, according to which upper bounded correlation of f, g implies a lower bound for circuits of the form MAJ \circ f that compute g. MAJ outputs 1 if and only if the majority of input bits is 1. Cai et al. [3] studied depth 3 circuits of the form MAJ \circ MOD $_m \circ$ AND and introduced the analytic study of *exponential sums*, which is important for our work as well. Their results were for symmetric MOD functions, later generalized by Green [9], whereas Bourgain [2] (for odd moduli) and Green et al. [11] and Chattopadhyay [5] finally showed an exponential size lower bound for MAJ \circ MOD $_m \circ$ AND $_{O(1)}$ computing MOD $_q$, when m, q are co-prime, i.e. (m, q) = 1.

For two layers of MOD gates, Grolmusz et al. [12] and Caussinus [4] studied $MOD_m \circ MOD_r$ circuits computing the AND function and proved, for any m, r, exponential circuit size lower bounds. Barrington and Straubing [1] considered $MOD_p \circ MOD_m$ circuits and proved an exponential size lower bound for such circuits computing MOD_q , where p is a prime and (p, q) = (m, q) = 1. Straubing [16] introduced a finite field representation of MOD gates and simplified the previous proofs [1,12]. Chattopadhyay et al. [6] studied $MOD_r \circ MOD_m$ to compute MOD_q , where (r, q) = (m, q) = 1, for composite r. The authors proved that the fan-in of the output MOD_r gate, or any ANY gate, must be $\Omega(n)$.

2. Notations and prerequisites

All operations in this note are over \mathbb{C} , e.g. in evaluating a polynomial function $P: \{0, 1\}^n \to \mathbb{Z}$ with integer coefficients the operations treat the inputs 0, 1 as integers. We write $||x||_1 := \sum_{i=1}^n x_i$ for $x \in \{0, 1\}^n$ and denote by MOD_m the boolean function (gate), where MOD_m($||x||_1$) = 1 if $m|||x||_1$ and 0 otherwise; not to be confused with the modulus over \mathbb{Z} , i.e. $||x||_1$ (mod m). Thus, polynomial functions take inputs $\{0, 1\}^n$ and MOD functions take inputs from \mathbb{Z} . For $X \in \mathbb{Z}$ we write $e_m(X) := e^{X\frac{2\pi i}{m}}$, where $e^{\frac{2\pi i}{m}}$ is the m-th primitive root of 1. Then, MOD_m(X) = $\frac{1}{m} \sum_{0 \le k < m} e_m(kX)$. The correlation of the boolean functions $f, g: \{0, 1\}^n \to \{0, 1\}$ is defined as $\operatorname{Corr}(f, g) =$ $|\operatorname{Pr}_X(f(x) = 1 \mid g(x) = 1) - \operatorname{Pr}_X(f(x) = 1 \mid g(x) = 0)| =$ $|\frac{\mathbb{E}_X(f(x)\cdot g(x))}{\operatorname{Pr}_X(g(x)=0)} - \frac{\mathbb{E}_X(f(x)\cdot (1-g(x)))}{\operatorname{Pr}_X(g(x)=0)}|$. We extend the definition for $f: \{0, 1\}^n \to \mathbb{C}$ and $g: \{0, 1\}^n \to \{0, 1\}$ so that $\operatorname{Corr}(f, g) =$ $|\frac{\mathbb{E}_X[f(x)\cdot g(x)]}{\operatorname{Pr}_X(g(x)=1)} - \frac{\mathbb{E}_X[f(x)\cdot (1-g(x))]}{\operatorname{Pr}_X(g(x)=0)}|$.

Now, let us state an observation we made, which is repeatedly used later on.

Observation 1 (Sub-additivity). Let functions $f_1, f_2 : \{0, 1\}^n \rightarrow \mathbb{C}$ and boolean function g. Then, $\operatorname{Corr}(f_1 + f_2, g) \leq \operatorname{Corr}(f_1, g) + \operatorname{Corr}(f_2, g)$ and $\operatorname{Corr}(c \cdot f, g) = |c| \cdot \operatorname{Corr}(f, g)$, for every constant $c \in \mathbb{C}$.

The main tool for proving MAJ \circ ANY circuit lower bounds is the following lemma [13]. In fact, this lemma applies not only to MAJ but to any threshold gate. **Lemma 2** (Discriminator lemma [13]). Let *T* be a circuit consisting of a majority gate over sub-circuits $C_1, C_2, ..., C_s$ each taking n-bit inputs. Let *f* be the function computed by this circuit. If $Corr(C_i(x), f(x)) \le \epsilon$ for each i = 1, ..., s, then $s \ge 1/\epsilon$.

We use the above lemma together with elementary analytic techniques. The analytic machinery is explicit in the statement of the following Lemma 3.

Lemma 3. (See [11].) For any $m, q, k \in \mathbb{Z}^+$, (m, q) = 1, a polynomial function P with integer coefficients, $\deg(P) = O(1)$, and $x \in \{0, 1\}^n$, then $\operatorname{Corr}(e_m(P(x)), \operatorname{MOD}_q(||x||_1)) \leq 2^{-\Omega(n)}$.

We represent functions $f : \{0, 1\}^n \to \{0, 1\}$ as $f(x) = \sum_{S \subseteq \{1, 2, \dots, n\}} \alpha_S \prod_{x_i \in S} x_i$, where $\alpha_S \in \mathbb{Z}$. This representation is unique, the α_S 's are unique, since the functions $\{\prod_{i \in S} x_i | S \subseteq \{1, 2, \dots, n\}\}$ form a function basis¹ for $\{0, 1\}^n \to \mathbb{C}$. These basis functions are not to be confused with the Fourier basis, which consists of the characters written multiplicatively $(\{-1, 1\}^n \to \{-1, 1\})$. We also introduce the definition of norm $(f) := \sum_S |\alpha_S|$, which is particularly useful for our purposes.

3. Our results: statements and proofs

Our main results are Theorem 4, which states the circuit lower bound, and Theorem 5, which states the correlation lower bound. Note that Theorem 4 is used to show Theorem 5.

To simplify expression we represent a family of functions $\{g_m\}_m$ by one $g \in \{g_m\}_m$.

Theorem 4. Let *n* be the input length to circuits and $\deg_g = o(n)$. Fix arbitrary $g : \{0, 1\}^{\deg_g} \to \{0, 1\}$ and $m, q \in \mathbb{Z}^+$, where (m, q) = 1. If a MAJ $\circ g \circ AND \circ MOD_m \circ AND_{O(1)}$ circuit computes MOD_q , then the fan-in of the MAJ gate on the top is $2^{\Omega(n)}$.

Theorem 5. For every $d \in \mathbb{Z}^+$ and every $m, q \in \mathbb{Z}^+$, (m,q) = 1 there exists a degree d polynomial P such that $Corr(MOD_m(P(x)), MOD_q(||x||_1)) \ge 2^{-O(\frac{n}{d})}$.

3.1. Proof of Theorem 4: via a correlation upper bound

First, the sub-additive properties of correlation (Observation 1) yield the following lemma.

Lemma 6 (Bounded correlation amplifier). For every $d, m, q \in \mathbb{Z}^+$, (m, q) = 1 and every $g : \{0, 1\}^{\deg_g} \to \{0, 1\}$ and polynomial functions $P_i(x), x \in \{0, 1\}^n$, whose degrees are $\deg(P_i(x)) \leq d$ we have

 $\operatorname{Corr}(\operatorname{g}(\operatorname{MOD}_m(P_1(x)), \operatorname{MOD}_m(P_2(x)), \ldots,$

$$MOD_m(P_{deg_g}(x))), MOD_q(||x||_1))$$

 \leq norm(g)

 $\max_{P(x)\in\mathbb{Z}[x], \deg(P)\leq d} (\operatorname{Corr}(e_m(P(x)), \operatorname{MOD}_q(||x||_1)))$

¹ Since $\prod_{i \in S} x_i \prod_{i \notin S} (1 - x_i)$ are easily shown to be orthogonal and the dimension of the function space is 2^n .

Download English Version:

https://daneshyari.com/en/article/427380

Download Persian Version:

https://daneshyari.com/article/427380

Daneshyari.com