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We prove a 2−O
(

n
d(n)

)
lower bound on the correlation of MODm ◦ANDd(n) and MODr , where 

m, r are positive integers. This is the first non-trivial lower bound on the correlation of such 
functions for arbitrary m, r. Our motivation is the question posed by Green et al., to which 
the 2−O

(
n

d(n)

)
bound is a partial negative answer. We first show a 2−�(n) correlation upper 

bound that implies a 2�(n) circuit size lower bound. Then, through a reduction we obtain a 
2−O ( n

d(n)
) correlation lower bound. In fact, the 2�(n) size lower bound is for MAJ ◦ ANYo(n) ◦

AND ◦ MODr ◦ ANDO (1) circuits, which is of independent interest.
© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the power of small-depth circuits that 
have MODm gates, in addition to the usual boolean gates, 
is one of the most fascinating areas of computational com-
plexity. MODm is the boolean function that outputs 1 if 
and only if the number of 1s in its input is a multiple 
of m. The computational limitations of MODm gates for 
prime m = p is well-understood since 1980s through the 
seminal works of Razborov [14] and Smolensky [15]. They 
proved that no constant depth polynomial size circuit with 
{MODp, AND, OR, NOT} gates can compute the MODq func-
tion, for primes p �= q. Smolensky further conjectured that 
the same holds true for composite moduli, which remains 
an important open question.

A main tool in the study of small-depth circuit lower 
bounds is via correlation upper bounds [2,3,9,11,13,8,7]. 
The notion of correlation quantifies the distance of two 
functions and was introduced by Hajnal et al. [13]; see 
p. 538 for definitions. The smaller the correlation between 
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the circuit and a function the larger the circuit size to com-
pute this function.

In this note we show a limitation of the correlation 
method, aiming to answer the question of Green et al. [11]. 
They asked whether it is possible to prove correlation up-
per bounds that yield size lower bounds for circuits of 
the form MODm ◦ ANDω(log n) , which correspond to func-
tions MODm(P (x)), for a polynomial P of degree ω(log n). 
We show a correlation lower bound between MODr and 
MODm(P (x)) where m ∈ Z is anything and P is of any 
degree. Previously, Green [10] and Viola [17] discussed 
correlation lower bounds that differ from ours. Viola’s ar-
gument is for the correlation between symmetric functions 
and polynomials of degree 

√
n (i.e. high degree) over GF(2)

(in fact, GF(p) for prime p), whereas Green’s argument is 
only about MOD2 and MOD3.

Our goal is to lower bound the correlation between 
MODr and any circuit Csimple with a single layer of MODm . 
We prove this in two steps. In the first step we obtain a 
correlation upper bound but for more complicated circuits 
Cmulti-layer, which in particular includes circuits with two 
MOD layers. This correlation upper bound implies a circuit 
size lower bound for Cmulti-layer. In the second step we do a 
reduction to obtain the lower bound on the correlation of a 
specific Csimple and MODr .
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There is considerable success in using correlation upper 
bounds in obtaining circuit lower bounds. In our argument 
we need to lower bound the size of circuits of the form 
MAJ◦ANYo(n)◦AND◦MODr ◦ANDd(n) , for which no previous 
lower bounds were known.

Hajnal et al. [13] showed the discriminator lemma, ac-
cording to which upper bounded correlation of f , g im-
plies a lower bound for circuits of the form MAJ ◦ f that 
compute g . MAJ outputs 1 if and only if the majority 
of input bits is 1. Cai et al. [3] studied depth 3 circuits 
of the form MAJ ◦ MODm ◦ AND and introduced the ana-
lytic study of exponential sums, which is important for our 
work as well. Their results were for symmetric MOD func-
tions, later generalized by Green [9], whereas Bourgain [2]
(for odd moduli) and Green et al. [11] and Chattopad-
hyay [5] finally showed an exponential size lower bound 
for MAJ ◦ MODm ◦ ANDO (1) computing MODq , when m, q
are co-prime, i.e. (m, q) = 1.

For two layers of MOD gates, Grolmusz et al. [12] and 
Caussinus [4] studied MODm ◦MODr circuits computing the 
AND function and proved, for any m, r, exponential circuit 
size lower bounds. Barrington and Straubing [1] consid-
ered MODp ◦MODm circuits and proved an exponential size 
lower bound for such circuits computing MODq , where p is 
a prime and (p, q) = (m, q) = 1. Straubing [16] introduced
a finite field representation of MOD gates and simplified 
the previous proofs [1,12]. Chattopadhyay et al. [6] studied 
MODr ◦MODm to compute MODq , where (r, q) = (m, q) = 1, 
for composite r. The authors proved that the fan-in of the 
output MODr gate, or any ANY gate, must be �(n).

2. Notations and prerequisites

All operations in this note are over C, e.g. in evaluating 
a polynomial function P : {0, 1}n → Z with integer coeffi-
cients the operations treat the inputs 0, 1 as integers. We 
write ||x||1 := ∑n

i=1 xi for x ∈ {0, 1}n and denote by MODm
the boolean function (gate), where MODm(||x||1) = 1 if 
m

∣∣||x||1 and 0 otherwise; not to be confused with the 
modulus over Z, i.e. ||x||1( mod m). Thus, polynomial 
functions take inputs {0, 1}n and MOD functions take in-

puts from Z. For X ∈ Z we write em(X) := e X 2π i
m , where 

e
2π i
m is the m-th primitive root of 1. Then, MODm(X) =

1
m

∑
0≤k<m em(kX). The correlation of the boolean func-

tions f , g : {0, 1}n → {0, 1} is defined as Corr( f , g) =
|Prx( f (x) = 1 

∣∣ g(x) = 1) − Prx( f (x) = 1 
∣∣ g(x) = 0)| =

|Ex( f (x)·g(x))
Prx(g(x)=1)

− Ex( f (x)·(1−g(x)))
Prx(g(x)=0)

|. We extend the definition for 
f : {0, 1}n →C and g : {0, 1}n → {0, 1} so that Corr( f , g) =
|Ex[ f (x)·g(x)]

Prx[g(x)=1] − Ex[ f (x)·(1−g(x))]
Prx[g(x)=0] |.

Now, let us state an observation we made, which is re-
peatedly used later on.

Observation 1 (Sub-additivity). Let functions f1, f2 : {0, 1}n→
C and boolean function g. Then, Corr( f1 + f2, g) ≤ Corr( f1, g)

+ Corr( f2, g) and Corr(c · f , g) = |c| · Corr( f , g), for every 
constant c ∈ C.

The main tool for proving MAJ ◦ ANY circuit lower 
bounds is the following lemma [13]. In fact, this lemma 
applies not only to MAJ but to any threshold gate.

Lemma 2 (Discriminator lemma [13]). Let T be a circuit con-
sisting of a majority gate over sub-circuits C1, C2, . . . , Cs each 
taking n-bit inputs. Let f be the function computed by this cir-
cuit. If Corr(Ci(x), f (x)) ≤ ε for each i = 1, . . . , s, then s ≥ 1/ε .

We use the above lemma together with elementary an-
alytic techniques. The analytic machinery is explicit in the 
statement of the following Lemma 3.

Lemma 3. (See [11].) For any m, q, k ∈ Z
+ , (m, q) = 1, a poly-

nomial function P with integer coefficients, deg(P ) = O (1), 
and x ∈ {0, 1}n, then Corr(em(P (x)), MODq(||x||1)) ≤ 2−�(n) .

We represent functions f : {0, 1}n → {0, 1} as f (x) =∑
S⊆{1,2,...,n} αS

∏
xi∈S xi , where αS ∈ Z. This represen-

tation is unique, the αS ’s are unique, since the func-
tions {∏i∈S xi |S ⊆ {1, 2, . . . , n}} form a function basis1 for 
{0, 1}n → C. These basis functions are not to be confused 
with the Fourier basis, which consists of the characters 
written multiplicatively ({−1, 1}n → {−1, 1}). We also in-
troduce the definition of norm( f ) := ∑

S |αS |, which is 
particularly useful for our purposes.

3. Our results: statements and proofs

Our main results are Theorem 4, which states the cir-
cuit lower bound, and Theorem 5, which states the corre-
lation lower bound. Note that Theorem 4 is used to show 
Theorem 5.

To simplify expression we represent a family of func-
tions {gm}m by one g ∈ {gm}m .

Theorem 4. Let n be the input length to circuits and degg =
o(n). Fix arbitrary g : {0, 1}degg → {0, 1} and m, q ∈ Z

+ , where 
(m, q) = 1. If a MAJ ◦ g ◦ AND ◦ MODm ◦ ANDO (1) circuit com-
putes MODq, then the fan-in of the MAJ gate on the top is 2�(n).

Theorem 5. For every d ∈ Z
+ and every m, q ∈ Z

+ ,
(m, q) = 1 there exists a degree d polynomial P such that

Corr(MODm(P (x)), MODq(||x||1)) ≥ 2−O
( n

d

)
.

3.1. Proof of Theorem 4: via a correlation upper bound

First, the sub-additive properties of correlation (Obser-
vation 1) yield the following lemma.

Lemma 6 (Bounded correlation amplifier). For every d, m, q ∈
Z

+ , (m, q) = 1 and every g : {0, 1}degg → {0, 1} and polyno-
mial functions Pi(x), x ∈ {0, 1}n, whose degrees are deg(Pi(x))
≤ d we have

Corr(g(MODm(P1(x)),MODm(P2(x)), . . . ,

MODm(Pdegg
(x))),MODq(||x||1))

≤ norm(g)

· max
P (x)∈Z[x],deg(P )≤d

(Corr(em(P (x)),MODq(||x||1)))

1 Since ∏i∈S xi
∏

i /∈s(1 − xi) are easily shown to be orthogonal and the 
dimension of the function space is 2n .
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