Correlation lower bounds from correlation upper bounds

Shiteng Chen ${ }^{\text {a }}$, Periklis A. Papakonstantinou ${ }^{\text {b,* }}$
a IIIS, Tsinghua University, China
${ }^{\mathrm{b}}$ MSIS, Rutgers Business School, Rutgers University, United States

A R T I C L E I N F O

Article history:

Received 29 July 2015
Accepted 27 March 2016
Available online 7 April 2016
Communicated by R. Uehara

Keywords:

Computational complexity
Circuit complexity
Correlation
Composite modulus

Abstract

We prove a $2^{-O\left(\frac{n}{d(n)}\right)}$ lower bound on the correlation of $\mathrm{MOD}_{m} \circ \mathrm{AND}_{d(n)}$ and MOD_{r}, where m, r are positive integers. This is the first non-trivial lower bound on the correlation of such functions for arbitrary m, r. Our motivation is the question posed by Green et al., to which the $2^{-O\left(\frac{n}{d(n)}\right)}$ bound is a partial negative answer. We first show a $2^{-\Omega(n)}$ correlation upper bound that implies a $2^{\Omega(n)}$ circuit size lower bound. Then, through a reduction we obtain a $2^{-0\left(\frac{n}{d(n)}\right)}$ correlation lower bound. In fact, the $2^{\Omega(n)}$ size lower bound is for MAJ $\circ \mathrm{ANY}_{o(n)} \circ$ $\mathrm{AND} \circ \mathrm{MOD}_{r} \circ \mathrm{AND}_{O(1)}$ circuits, which is of independent interest.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the power of small-depth circuits that have MOD_{m} gates, in addition to the usual boolean gates, is one of the most fascinating areas of computational complexity. MOD_{m} is the boolean function that outputs 1 if and only if the number of 1 s in its input is a multiple of m. The computational limitations of MOD_{m} gates for prime $m=p$ is well-understood since 1980s through the seminal works of Razborov [14] and Smolensky [15]. They proved that no constant depth polynomial size circuit with $\left\{\mathrm{MOD}_{p}, \mathrm{AND}, \mathrm{OR}, \mathrm{NOT}\right\}$ gates can compute the MOD_{q} function, for primes $p \neq q$. Smolensky further conjectured that the same holds true for composite moduli, which remains an important open question.

A main tool in the study of small-depth circuit lower bounds is via correlation upper bounds [2,3,9,11,13,8,7]. The notion of correlation quantifies the distance of two functions and was introduced by Hajnal et al. [13]; see p. 538 for definitions. The smaller the correlation between

[^0]the circuit and a function the larger the circuit size to compute this function.

In this note we show a limitation of the correlation method, aiming to answer the question of Green et al. [11]. They asked whether it is possible to prove correlation upper bounds that yield size lower bounds for circuits of the form $\mathrm{MOD}_{m} \circ \mathrm{AND}_{\omega(\log n)}$, which correspond to functions $\mathrm{MOD}_{m}(P(x))$, for a polynomial P of degree $\omega(\log n)$. We show a correlation lower bound between MOD_{r} and $\operatorname{MOD}_{m}(P(x))$ where $m \in \mathbb{Z}$ is anything and P is of any degree. Previously, Green [10] and Viola [17] discussed correlation lower bounds that differ from ours. Viola's argument is for the correlation between symmetric functions and polynomials of degree \sqrt{n} (i.e. high degree) over GF(2) (in fact, $\mathrm{GF}(p)$ for prime p), whereas Green's argument is only about MOD_{2} and MOD_{3}.

Our goal is to lower bound the correlation between MOD_{r} and any circuit $\mathcal{C}_{\text {simple }}$ with a single layer of MOD_{m}. We prove this in two steps. In the first step we obtain a correlation upper bound but for more complicated circuits $\mathcal{C}_{\text {multi-layer }}$, which in particular includes circuits with two MOD layers. This correlation upper bound implies a circuit size lower bound for $\mathcal{C}_{\text {multi-layer }}$. In the second step we do a reduction to obtain the lower bound on the correlation of a specific $\mathcal{C}_{\text {simple }}$ and MOD_{r}.

There is considerable success in using correlation upper bounds in obtaining circuit lower bounds. In our argument we need to lower bound the size of circuits of the form $\mathrm{MAJ} \circ \mathrm{ANY}_{o(n)} \circ \mathrm{AND} \circ \mathrm{MOD}_{r} \circ \mathrm{AND}_{d(n)}$, for which no previous lower bounds were known.

Hajnal et al. [13] showed the discriminator lemma, according to which upper bounded correlation of f, g implies a lower bound for circuits of the form MAJ $\circ f$ that compute g. MAJ outputs 1 if and only if the majority of input bits is 1 . Cai et al. [3] studied depth 3 circuits of the form $\mathrm{MAJ} \circ \mathrm{MOD}_{m} \circ$ AND and introduced the analytic study of exponential sums, which is important for our work as well. Their results were for symmetric MOD functions, later generalized by Green [9], whereas Bourgain [2] (for odd moduli) and Green et al. [11] and Chattopadhyay [5] finally showed an exponential size lower bound for $\mathrm{MAJ} \circ \mathrm{MOD}_{m} \circ \mathrm{AND}_{0(1)}$ computing MOD_{q}, when m, q are co-prime, i.e. $(m, q)=1$.

For two layers of MOD gates, Grolmusz et al. [12] and Caussinus [4] studied $\mathrm{MOD}_{m} \circ \mathrm{MOD}_{r}$ circuits computing the AND function and proved, for any m, r, exponential circuit size lower bounds. Barrington and Straubing [1] considered $\mathrm{MOD}_{p} \circ \mathrm{MOD}_{m}$ circuits and proved an exponential size lower bound for such circuits computing MOD_{q}, where p is a prime and $(p, q)=(m, q)=1$. Straubing [16] introduced a finite field representation of MOD gates and simplified the previous proofs [1,12]. Chattopadhyay et al. [6] studied $\mathrm{MOD}_{r} \circ \mathrm{MOD}_{m}$ to compute MOD_{q}, where $(r, q)=(m, q)=1$, for composite r. The authors proved that the fan-in of the output MOD_{r} gate, or any ANY gate, must be $\Omega(n)$.

2. Notations and prerequisites

All operations in this note are over \mathbb{C}, e.g. in evaluating a polynomial function $P:\{0,1\}^{n} \rightarrow \mathbb{Z}$ with integer coefficients the operations treat the inputs 0,1 as integers. We write $\|x\|_{1}:=\sum_{i=1}^{n} x_{i}$ for $x \in\{0,1\}^{n}$ and denote by MOD_{m} the boolean function (gate), where $\operatorname{MOD}_{m}\left(\|x\|_{1}\right)=1$ if $m\left|\mid x \|_{1}\right.$ and 0 otherwise; not to be confused with the modulus over \mathbb{Z}, i.e. $\|x\|_{1}(\bmod m)$. Thus, polynomial functions take inputs $\{0,1\}^{n}$ and MOD functions take inputs from \mathbb{Z}. For $X \in \mathbb{Z}$ we write $e_{m}(X):=e^{X \frac{2 \pi i}{m}}$, where $e^{\frac{2 \pi i}{m}}$ is the m-th primitive root of 1 . Then, $\operatorname{MOD}_{m}(X)=$ $\frac{1}{m} \sum_{0 \leq k<m} e_{m}(k X)$. The correlation of the boolean functions $f, g:\{0,1\}^{n} \rightarrow\{0,1\}$ is defined as $\operatorname{Corr}(f, g)=$ $\left|\operatorname{Pr}_{x}(f(x)=1 \mid g(x)=1)-\operatorname{Pr}_{x}(f(x)=1 \mid g(x)=0)\right|=$ $\left|\frac{\mathbb{E}_{x}(f(x) \cdot g(x))}{\operatorname{Pr}_{x}(g(x)=1)}-\frac{\mathbb{E}_{x}(f(x) \cdot(1-g(x)))}{\operatorname{Pr}_{x}(g(x)=0)}\right|$. We extend the definition for $f:\{0,1\}^{n} \rightarrow \mathbb{C}$ and $g:\{0,1\}^{n} \rightarrow\{0,1\}$ so that $\operatorname{Corr}(f, g)=$ $\left|\frac{\mathbb{E}_{X}[f(x) \cdot g(x)]}{\mathrm{P}_{\mathrm{X}}[g(x)=1]}-\frac{\mathbb{E}_{X}[f(x) \cdot(1-g(x))]}{\mathrm{Pr}_{\chi}[g(x)=0]}\right|$.

Now, let us state an observation we made, which is repeatedly used later on.

Observation 1 (Sub-additivity). Let functions $f_{1}, f_{2}:\{0,1\}^{n} \rightarrow$ \mathbb{C} and boolean function g. Then, $\operatorname{Corr}\left(f_{1}+f_{2}, g\right) \leq \operatorname{Corr}\left(f_{1}, g\right)$ $+\operatorname{Corr}\left(f_{2}, g\right)$ and $\operatorname{Corr}(c \cdot f, g)=|c| \cdot \operatorname{Corr}(f, g)$, for every constant $c \in \mathbb{C}$.

The main tool for proving MAJ \circ ANY circuit lower bounds is the following lemma [13]. In fact, this lemma applies not only to MAJ but to any threshold gate.

Lemma 2 (Discriminator lemma [13]). Let T be a circuit consisting of a majority gate over sub-circuits $C_{1}, C_{2}, \ldots, C_{s}$ each taking n-bit inputs. Let f be the function computed by this circuit. If $\operatorname{Corr}\left(C_{i}(x), f(x)\right) \leq \epsilon$ for each $i=1, \ldots, s$, then $s \geq 1 / \epsilon$.

We use the above lemma together with elementary analytic techniques. The analytic machinery is explicit in the statement of the following Lemma 3.

Lemma 3. (See [11].) For any $m, q, k \in \mathbb{Z}^{+},(m, q)=1$, a polynomial function P with integer coefficients, $\operatorname{deg}(P)=O(1)$, and $x \in\{0,1\}^{n}$, then $\operatorname{Corr}\left(e_{m}(P(x)), \operatorname{MOD}_{q}\left(\|x\|_{1}\right)\right) \leq 2^{-\Omega(n)}$.

We represent functions $f:\{0,1\}^{n} \rightarrow\{0,1\}$ as $f(x)=$ $\sum_{S \subseteq\{1,2, \ldots, n\}} \alpha_{S} \prod_{x_{i} \in S} x_{i}$, where $\alpha_{S} \in \mathbb{Z}$. This representation is unique, the α_{S} 's are unique, since the functions $\left\{\prod_{i \in S} x_{i} \mid S \subseteq\{1,2, \ldots, n\}\right\}$ form a function basis ${ }^{1}$ for $\{0,1\}^{n} \rightarrow \mathbb{C}$. These basis functions are not to be confused with the Fourier basis, which consists of the characters written multiplicatively $\left(\{-1,1\}^{n} \rightarrow\{-1,1\}\right)$. We also introduce the definition of $\operatorname{norm}(f):=\sum_{S}\left|\alpha_{S}\right|$, which is particularly useful for our purposes.

3. Our results: statements and proofs

Our main results are Theorem 4, which states the circuit lower bound, and Theorem 5, which states the correlation lower bound. Note that Theorem 4 is used to show Theorem 5.

To simplify expression we represent a family of functions $\left\{g_{m}\right\}_{m}$ by one $g \in\left\{g_{m}\right\}_{m}$.

Theorem 4. Let n be the input length to circuits and $\operatorname{deg}_{g}=$ $o(n)$. Fix arbitrary $g:\{0,1\}^{\operatorname{deg}_{g}} \rightarrow\{0,1\}$ and $m, q \in \mathbb{Z}^{+}$, where $(m, q)=1$. If $a \mathrm{MAJ} \circ g \circ \mathrm{AND} \circ \mathrm{MOD}_{m} \circ \mathrm{AND}_{0(1)}$ circuit computes MOD_{q}, then the fan-in of the MAJ gate on the top is $2^{\Omega(n)}$.

Theorem 5. For every $d \in \mathbb{Z}^{+}$and every $m, q \in \mathbb{Z}^{+}$, $(m, q)=1$ there exists a degree d polynomial P such that $\operatorname{Corr}\left(\operatorname{MOD}_{m}(P(x)), \operatorname{MOD}_{q}\left(\|x\|_{1}\right)\right) \geq 2^{-O\left(\frac{n}{d}\right)}$.

3.1. Proof of Theorem 4: via a correlation upper bound

First, the sub-additive properties of correlation (Observation 1) yield the following lemma.

Lemma 6 (Bounded correlation amplifier). For every $d, m, q \in$ $\mathbb{Z}^{+},(m, q)=1$ and every $g:\{0,1\}^{\text {deg }_{g}} \rightarrow\{0,1\}$ and polynomial functions $P_{i}(x), x \in\{0,1\}^{n}$, whose degrees are $\operatorname{deg}\left(P_{i}(x)\right)$ $\leq d$ we have
$\operatorname{Corr}\left(g\left(\operatorname{MOD}_{m}\left(P_{1}(x)\right), \operatorname{MOD}_{m}\left(P_{2}(x)\right), \ldots\right.\right.$,

$$
\begin{aligned}
& \left.\left.\operatorname{MOD}_{m}\left(P_{\operatorname{deg}_{g}}(x)\right)\right), \operatorname{MOD}_{q}\left(\|x\|_{1}\right)\right) \\
\leq & \operatorname{norm}(g) \\
& \max _{P(x) \in \mathbb{Z}[x], \operatorname{deg}(P) \leq d}\left(\operatorname{Corr}\left(e_{m}(P(x)), \operatorname{MOD}_{q}\left(\|x\|_{1}\right)\right)\right)
\end{aligned}
$$

[^1]
https://daneshyari.com/en/article/427380

Download Persian Version:
https://daneshyari.com/article/427380

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: shitengchen@gmail.com (S. Chen), periklis.research@gmail.com (P.A. Papakonstantinou).

[^1]: ${ }^{1}$ Since $\prod_{i \in S} x_{i} \prod_{i \notin s}\left(1-x_{i}\right)$ are easily shown to be orthogonal and the dimension of the function space is 2^{n}.

