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We present a new algorithm for computing balanced flows in equality networks arising in 
market equilibrium computations. The current best time bound for computing balanced 
flows in such networks requires O (n) maxflow computations, where n is the number 
of nodes in the network [1]. Our algorithm requires only a single parametric flow 
computation. The best algorithm for computing parametric flows [3] is only by a 
logarithmic factor slower than the best algorithms for computing maxflows. Hence, the 
running time of the algorithms in Devanur et al. [1] and Duan and Mehlhorn [2] for 
computing market equilibria in linear Fisher and Arrow–Debreu markets improve by almost 
a factor of n.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Balanced flows are an important ingredient in equilib-
rium computations for the linear Fisher and Arrow–Debreu
markets. In the Arrow–Debreu market model, we have n
agents, where each agent owns some goods and a utility 
function over the existing set of goods. The goal is to as-
sign prices to all the goods such that the market clears, 
meaning that all the goods are sold and each agent spends 
all of his budget on only goods with maximum utility. 
These prices are called the equilibrium prices and the state 
of the market with such prices is the equilibrium state we 
want to reach. Under some assumptions, it was shown in 
[7] that such prices exist. The Fisher model is a simplifica-
tion of the Arrow–Debreu model, where each agent comes 
with a budget instead of the endowment of goods [8]. The 
linear Arrow–Debreu market is a special case where the 
utility functions are linear, and the same applies to the 
linear Fisher model. Later on, we will refer to agents as 
buyers.
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The problem of finding the equilibrium prices in these 
market models has been studied for a long time, see [9]
and [10] for surveys. The concept of a balanced flow was 
introduced in the first combinatorial algorithm [1] for find-
ing the equilibrium prices in the linear Fisher market. 
Later, balanced flows were used in [2] and [11] for com-
binatorial algorithms for computing equilibrium prices in 
the linear Arrow–Debreu market.

The equilibrium algorithms mentioned above compute 
balanced flows in a special type of flow network, known 
as equality network. An equality network is a bipartite flow 
network where we have a set of buyers B adjacent to the 
source node s and a set of goods C adjacent to the sink 
node t . Hence, the vertex set of the network is {s, t} ∪ B ∪C . 
Also, we assume that the number of buyers is equal to the 
number of goods. Each buyer bi has a positive budget ei
and each good c j has a positive price p j . The edge set is 
defined as follows:

1. An edge (s, bi) with capacity ei for each bi ∈ B .
2. An edge (ci, t) with capacity pi for each ci ∈ C .
3. All edges running between B and C have infinite ca-

pacity. Also, we assume that each buyer is connected 
to at least one good and similarly each good is con-
nected to at least one buyer.
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A flow in this network corresponds to the money flow 
from buyers to goods. So, an amount of x units flowing 
from buyer bi to good cj indicates that bi spends x units 
on good cj . We refrain from relating the equality network 
to the market equilibrium computation as this is not im-
portant for understanding our algorithm.

Balanced flows are defined for equality networks in [1]. 
We denote the set of buyers by B = {b1, b2, ..., bn}. The 
surplus r(bi) of the buyer bi with respect to a maxi-
mum flow f is the residual capacity of the edge (s, bi)

(capacity of this edge minus the flow running through 
it). The surplus vector is the vector of the surpluses of 
all buyers (r(b1), r(b2), ..., r(bn)). The balanced flow is the 
maximum flow that minimizes the two-norm of the sur-
plus vector among all maximum flows of the network. 
In [1], it is shown that a balanced flow can be com-
puted with O (n) maxflow computations. This is the best 
time bound achieved up till now for computing balanced 
flows.

The name “balanced flow” comes from the fact that it 
is the maximum flow in the equality network that bal-
ances the surpluses as much as possible. Additionally, it 
is shown in [1] that the surplus vector is unique for all 
balanced flows in a given equality network. From this fact 
and other properties shown in [1] and [2], we can deduce 
the following characterization of balanced flows in equality 
networks:

1. Buyers can be partitioned into maximal disjoint blocks 
based on their surpluses, B1, B2, ..., Bh having sur-
pluses r1 > r2 > ... > rh ≥ 0. Buyers in block Bi have 
the surplus ri . The uniqueness of this partition follows 
from the uniqueness of the surplus vector of the buy-
ers.

2. We can assume without loss of generality that rh = 0.
3. Define Ci to be the set of goods to which money flows 

from Bi . For i < h, all goods in Ci are completely sold, 
i.e., the edges from Ci to t are saturated. There is no 
flow from Bi to Cj for j < i. Also, there are no edges 
from Bi to C j for j > i.

We show how to compute balanced flows in equal-
ity networks by a single parametric flow computation, 
which improves the running time of the algorithms in [1]
and [2] for computing market equilibria in linear Fisher 
and Arrow–Debreu markets by almost a factor of n. Our al-
gorithm adds to the applications of parametric flows men-
tioned in [3].

In Section 2, we give an introduction to parametric net-
work flows. In Section 3, we state our algorithm for com-
puting balanced flows, analyze its running time, and prove 
its correctness.

2. Parametric network flows

The parametric network flow problem [3] is a general-
ization of the standard network flow problem, in which the 
arc capacities are not fixed, but are functions of a real val-
ued single parameter λ. More specifically, we consider the

following parametric problem:

1. The arc (s, bi) has capacity max(0, ei − λ).
2. The capacity of all other arcs is constant.
3. The parameter λ decreases from a large value down to 

zero.

We define the min-cut capacity function κ(λ) as the ca-
pacity of a minimum cut in the network as a function of 
the parameter λ [3]. Among the cuts of capacity κ(λ), let 
(X(λ), X(λ)) be the cut with the smallest sink side1 X(λ). 
It is shown in [3] that X(λ) ⊆ X(λ′) for λ ≥ λ′ .

This implies that we have at most n − 1 distinct min-
imum cuts. Under the assumption of linearity of the arc 
capacity functions of λ, κ(λ) is a piecewise-linear concave 
function with at most n − 2 breakpoints. A breakpoint is a 
value of λ where the slope of κ(λ) changes.

As long as the minimum cut is the same, decreasing λ
will only result in increasing the flow linearly in the cur-
rent segment of κ(λ). [3] gives an algorithm for comput-
ing all breakpoints of κ(λ) which runs in O (nm log(n2/m))

worst-case time complexity, for a network with n nodes 
and m edges; they call it the breakpoint algorithm. Addi-
tionally, they state that this algorithm can be easily aug-
mented to store for each vertex v /∈ {s, t} the breakpoint 
at which v moves from the sink side to the source side 
of a minimum cut of minimum sink size without alter-
ing the time bound. We will refer to the breakpoint al-
gorithm with the stated augmentation as the augmented 
breakpoint algorithm. We will use this augmented break-
point algorithm in our algorithm for computing balanced 
flows.

The algorithm in [3] extends the standard preflow al-
gorithm by Goldberg and Tarjan [12] for solving the max-
imum flow problem. Its running time is only by the fac-
tor log(n2/m) slower than the running time of the best 
maxflow algorithms [4–6].

3. Improved algorithm for balanced flow computation

In this section, we describe our algorithm for comput-
ing a balanced flow in a given equality network N and 
prove its correctness. The intuition behind our algorithm 
is as follows. For λ = ∞, all edges out of s have capac-
ity zero. Since all edges into t have positive capacity, the 
minimum cut will have all buyers on the sink side. Then, 
step by step, at λ values corresponding to r1, ..., rh , the 
blocks B1, ..., Bh of buyers will move from the sink side of 
the minimum cut to the source side. The behavior of the 
function κ(λ) changes at these breakpoints, since at these 
surpluses some buyers will not be able to push more flow 
to the goods side. Hence the flow will stop at this point 
at these buyers, while continuing to increase for other 
buyers, and so on. An example for the evolution of the 
minimum cut is shown in Fig. 1. We will next give the 
details.

1 With respect to set inclusion, there is a unique minimum cut of ca-
pacity κ(λ) with smallest sink side.
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