
Information Processing Letters 116 (2016) 327–330

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Amortized rotation cost in AVL trees

Mahdi Amani a, Kevin A. Lai b,∗, Robert E. Tarjan b,c

a Università di Pisa, Dipartimento di Informatica, Italy
b Princeton University, Computer Science Department, USA
c Intertrust Technologies, Sunnyvale, CA, USA

a r t i c l e i n f o

Article history:
Received 11 June 2015
Received in revised form 28 December 2015
Accepted 29 December 2015
Available online 31 December 2015
Communicated by M. Chrobak

Keywords:
Data structures
AVL tree
Lower bound
Rotation

1. Introduction

An AVL tree [1] is the original type of balanced binary 
search tree. An insertion in an n-node AVL tree takes at 
most two rotations, but a deletion in an n-node AVL tree 
can take �(log n). A natural question is whether deletions 
can take many rotations not only in the worst case but 
in the amortized case as well. A sequence of n successive 
deletions in an n-node tree takes O (n) rotations [3], but 
what happens when insertions are intermixed with dele-
tions?

Haeupler, Sen, and Tarjan [2] conjectured that alternat-
ing insertions and deletions in an n-node AVL tree can 
cause each deletion to do �(log n) rotations, but they pro-
vided no construction to justify their claim. We provide 
such a construction: we show that, for infinitely many 
n, there is a set E of expensive n-node AVL trees with 
the property that, given any tree in E , deleting a cer-
tain leaf and then reinserting it produces a tree in E , 
with the deletion having done �(log n) rotations. One 
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can do an arbitrary number of such expensive deletion-
insertion pairs. The difficulty in obtaining such a con-
struction is that in general the tree produced by an ex-
pensive deletion-insertion pair is not the original tree. 
Indeed, if the trees in E have even height k, 2k/2 deletion-
insertion pairs are required to reproduce the original 
tree.

2. Definition and rebalancing of AVL trees

We begin with some terminology. A node in a binary 
tree is binary, unary, or a leaf if it has two, one, or no 
children, respectively. A unary node or a leaf has one or 
two missing children, respectively. We define the depth of a 
node in a binary tree recursively as 1 plus the depth of its 
parent, or 0 if it is the root. Similarly, we define the height
of a node in a binary tree as 1 plus the maximum of the 
heights of its children, or 0 if it is a leaf. We adopt the 
convention that the height of a missing node is −1. The 
height difference of a non-root node is its parent’s height 
minus its own height.

An AVL tree is a binary tree in which the heights of any 
two siblings differ by at most 1. Equivalently, it is a binary 
tree in which all height differences are 1 or 2. An inser-
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Fig. 1. Right rotation at node x. Triangles denote subtrees. The inverse 
operation is a left rotation at y.

tion or deletion of a node can destroy the AVL property. 
To restore it, we update the height information and if nec-
essary rebalance the tree by doing rotations, which change 
the tree structure locally while preserving the symmetric 
order of nodes. Fig. 1 illustrates a rotation.

To specify exactly how height information is updated 
and when rotations are done, we introduce node ranks, as 
proposed by Haeupler, Sen, and Tarjan [2]. Each node x
has an integer rank x.r, which is equal to the height of 
x except possibly during rebalancing, when x.r can be the 
previous height of x. By convention, missing nodes always 
have rank −1, and leaves always have rank 0. The rank dif-
ference of a node is its parent’s rank minus its own rank. 
We call a node an i, j node if the height differences of its 
children are i and j. This definition does not distinguish 
between left and right children. Node ranks equal node 
heights precisely when every node is a 1, j node for some 
j > 0, possibly a different j for each node. A binary tree 
with node ranks is an AVL tree if every node is a 1, 1 node 
or a 1, 2 node. We call this the rank rule. Henceforth we do 
not speak of heights, only ranks.

AVL trees grow by leaf insertions and shrink by dele-
tions of leaves and unary nodes. To add a leaf to an AVL 
tree, replace a missing node by the new leaf and give the 
new leaf a rank of 0. If the parent of the new leaf was it-
self a leaf, it is now a 0, 1 (unary) node, violating the rank 
rule. In this case, rebalance the tree by repeatedly applying 
the appropriate case in Fig. 2 until the rank rule holds.

A promotion (Fig. 2a) increases the rank of a node (x in 
Fig. 2a) by 1. We call the node whose rank increases the 
promoted node. Each promotion either creates a new vio-
lation at the parent of the promoted node or restores the 
rank rule and terminates rebalancing. Each single or dou-
ble rotation (Figs. 2b and 2c, respectively) restores the rank 
rule and terminates rebalancing.

To delete a leaf in an AVL tree, replace it by a miss-
ing node; to delete a unary node, replace it by its only 
child (initially changing no ranks).1 Such a deletion can vi-
olate the rank rule by producing a 2, 2 or 1, 3 node. In 
this case, rebalance the tree by applying the appropriate 
case in Fig. 3 until there is no violation. Each application 
of a case in Fig. 3 either restores the rank rule or creates 
a new violation at the parent of the previously violating 
node. Whereas each rotation case in insertion terminates 

1 Our expensive examples only delete leaves. To delete a binary node x, 
swap x with its symmetric-order successor or predecessor and proceed as 
described in the text; the swap makes x a leaf or unary node.

Fig. 2. Rebalancing cases after insertion. Numbers next to edges are rank 
differences. Rank differences of unmarked edges do not change. The pro-
mote step may repeat. All cases have mirror images.

rebalancing, the rotation cases in deletion can be non-
terminating.

3. Construction of AVL trees

In order to obtain an initial tree in our expensive set E , 
we must build it from an empty tree. Thus the first step 
in our construction is to show that any n-node AVL tree 
can be built from an empty tree by doing n insertions. Al-
though this result is easy to prove, we have not seen it in 
print before.2

Lemma 1. A tree formed from an AVL tree by deleting a leaf of 
maximum depth is an AVL tree.

Proof. Let T be an AVL tree, and suppose a leaf x of max-
imum depth is deleted. If the new tree is not an AVL tree, 
there is an ancestor y of x in T whose two children have 
heights differing by two or more. Let v be the child of y
that is an ancestor of x (possibly x itself), and w the other 
child of y (possibly a missing node). Since x has maximum 
depth, the height of v in T must be no less than that of w . 
But deletion of x decreases the height of v by at most one, 
so its new height remains within one of that of w , a con-
tradiction. �

2 It also happens to be false for more relaxed types of balanced trees, 
such as weak AVL (wavl) trees [2]. Not all n-node wavl trees can be built 
from an empty tree by doing insertions only; many require a number of 
intermixed insertions and deletions exponential in n. This follows from an 
analysis using an exponential potential function like those in [2].
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