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1. Introduction

An AVL tree [1] is the original type of balanced binary
search tree. An insertion in an n-node AVL tree takes at
most two rotations, but a deletion in an n-node AVL tree
can take ®(logn). A natural question is whether deletions
can take many rotations not only in the worst case but
in the amortized case as well. A sequence of n successive
deletions in an n-node tree takes O (n) rotations [3], but
what happens when insertions are intermixed with dele-
tions?

Haeupler, Sen, and Tarjan [2] conjectured that alternat-
ing insertions and deletions in an n-node AVL tree can
cause each deletion to do ©2(logn) rotations, but they pro-
vided no construction to justify their claim. We provide
such a construction: we show that, for infinitely many
n, there is a set E of expensive n-node AVL trees with
the property that, given any tree in E, deleting a cer-
tain leaf and then reinserting it produces a tree in E,
with the deletion having done ®(logn) rotations. One
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can do an arbitrary number of such expensive deletion-
insertion pairs. The difficulty in obtaining such a con-
struction is that in general the tree produced by an ex-
pensive deletion-insertion pair is not the original tree.
Indeed, if the trees in E have even height k, 2¢/2 deletion-
insertion pairs are required to reproduce the original
tree.

2. Definition and rebalancing of AVL trees

We begin with some terminology. A node in a binary
tree is binary, unary, or a leaf if it has two, one, or no
children, respectively. A unary node or a leaf has one or
two missing children, respectively. We define the depth of a
node in a binary tree recursively as 1 plus the depth of its
parent, or O if it is the root. Similarly, we define the height
of a node in a binary tree as 1 plus the maximum of the
heights of its children, or 0 if it is a leaf. We adopt the
convention that the height of a missing node is —1. The
height difference of a non-root node is its parent’s height
minus its own height.

An AVL tree is a binary tree in which the heights of any
two siblings differ by at most 1. Equivalently, it is a binary
tree in which all height differences are 1 or 2. An inser-
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Fig. 1. Right rotation at node x. Triangles denote subtrees. The inverse
operation is a left rotation at y.

tion or deletion of a node can destroy the AVL property.
To restore it, we update the height information and if nec-
essary rebalance the tree by doing rotations, which change
the tree structure locally while preserving the symmetric
order of nodes. Fig. 1 illustrates a rotation.

To specify exactly how height information is updated
and when rotations are done, we introduce node ranks, as
proposed by Haeupler, Sen, and Tarjan [2]. Each node x
has an integer rank x.r, which is equal to the height of
x except possibly during rebalancing, when x.r can be the
previous height of x. By convention, missing nodes always
have rank —1, and leaves always have rank 0. The rank dif-
ference of a node is its parent’s rank minus its own rank.
We call a node an i, j node if the height differences of its
children are i and j. This definition does not distinguish
between left and right children. Node ranks equal node
heights precisely when every node is a 1, j node for some
j >0, possibly a different j for each node. A binary tree
with node ranks is an AVL tree if every node is a 1, 1 node
or a 1,2 node. We call this the rank rule. Henceforth we do
not speak of heights, only ranks.

AVL trees grow by leaf insertions and shrink by dele-
tions of leaves and unary nodes. To add a leaf to an AVL
tree, replace a missing node by the new leaf and give the
new leaf a rank of 0. If the parent of the new leaf was it-
self a leaf, it is now a 0,1 (unary) node, violating the rank
rule. In this case, rebalance the tree by repeatedly applying
the appropriate case in Fig. 2 until the rank rule holds.

A promotion (Fig. 2a) increases the rank of a node (x in
Fig. 2a) by 1. We call the node whose rank increases the
promoted node. Each promotion either creates a new vio-
lation at the parent of the promoted node or restores the
rank rule and terminates rebalancing. Each single or dou-
ble rotation (Figs. 2b and 2c, respectively) restores the rank
rule and terminates rebalancing.

To delete a leaf in an AVL tree, replace it by a miss-
ing node; to delete a unary node, replace it by its only
child (initially changing no ranks).! Such a deletion can vi-
olate the rank rule by producing a 2,2 or 1,3 node. In
this case, rebalance the tree by applying the appropriate
case in Fig. 3 until there is no violation. Each application
of a case in Fig. 3 either restores the rank rule or creates
a new violation at the parent of the previously violating
node. Whereas each rotation case in insertion terminates

T Our expensive examples only delete leaves. To delete a binary node x,
swap x with its symmetric-order successor or predecessor and proceed as
described in the text; the swap makes x a leaf or unary node.
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(a) Promotion to rebalance after insertion

Rotation
—_—

(c) Double rotation to rebalance after insertion

Fig. 2. Rebalancing cases after insertion. Numbers next to edges are rank
differences. Rank differences of unmarked edges do not change. The pro-
mote step may repeat. All cases have mirror images.

rebalancing, the rotation cases in deletion can be non-
terminating.

3. Construction of AVL trees

In order to obtain an initial tree in our expensive set E,
we must build it from an empty tree. Thus the first step
in our construction is to show that any n-node AVL tree
can be built from an empty tree by doing n insertions. Al-
though this result is easy to prove, we have not seen it in
print before.?

Lemma 1. A tree formed from an AVL tree by deleting a leaf of
maximum depth is an AVL tree.

Proof. Let T be an AVL tree, and suppose a leaf x of max-
imum depth is deleted. If the new tree is not an AVL tree,
there is an ancestor y of x in T whose two children have
heights differing by two or more. Let v be the child of y
that is an ancestor of x (possibly x itself), and w the other
child of y (possibly a missing node). Since x has maximum
depth, the height of v in T must be no less than that of w.
But deletion of x decreases the height of v by at most one,
so its new height remains within one of that of w, a con-
tradiction. O

2 It also happens to be false for more relaxed types of balanced trees,
such as weak AVL (wavl) trees [2]. Not all n-node wavl trees can be built
from an empty tree by doing insertions only; many require a number of
intermixed insertions and deletions exponential in n. This follows from an
analysis using an exponential potential function like those in [2].
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