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The Fibonacci cube �n is obtained from the n-cube Q n by removing all the vertices that 
contain two consecutive 1s. It is proved that �n admits a perfect code if and only if n ≤ 3.
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1. Introduction

A 1-perfect code of a graph G is a subset C ⊆ V (G)

such that every vertex of G is either in C or adjacent 
to precisely one member of C . This concept generalizes 
to r-perfect codes, r ≥ 1, but since we will exclusively 
deal with 1-perfect codes, we will call them simply per-
fect codes. Another name frequently used for a perfect code 
is an efficient dominating set.

The study of codes in graphs which was initiated by 
Biggs [3] presents a generalization of the problem of the 
existence of (classical) error-correcting codes. For instance, 
Hamming codes and Lee codes correspond to codes in 
the Cartesian product of complete graphs and cycles, re-
spectively. For further results on perfect codes in Carte-
sian products, lexicograpic products, and strong products 
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see [22,24,1], respectively. In addition, for the characteriza-
tion of perfect codes in the direct product of cycles see [18,
27].

Classes of graphs similar to products for which perfect 
codes were investigated include direct graph bundles [9]
and twisted tori [12]. Perfect codes were also investigated 
in other classes of graphs, notably on Sierpiński graphs [5,
14], Cayley graphs [6], cubic vertex-transitive graphs [19], 
circulant graphs [7,21], and AT-free and dually chordal 
graphs [4].

Kratochvíl [20] proved a remarkable result that there 
are no nontrivial perfect codes over complete bipartite 
graphs with at least three vertices. In this note we es-
tablish a similar non-existence result for Fibonacci cubes. 
These cubes are interesting here from (at least) two rea-
sons. First, as (isometric) subgraphs of hypercubes (recall 
that Hamming codes are perfect codes in hypercubes) they 
are close to Cartesian product graphs. Second, they form 
an appealing model for interconnection networks [10].
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Fibonacci cubes have been extensively studied and 
found several applications: see the survey [13]. The inter-
est for Fibonacci cubes continues: recent research of them 
includes asymptotic properties [15], connectivity issues [2], 
and the structure of their disjoint induced hypercubes [8]. 
From the algorithmic point of view, Ramras [23] inves-
tigated congestion-free routing of linear permutations on 
Fibonacci cubes, while Vesel [25] designed a linear time 
recognition algorithm for this class of graphs.

The result of this note reads as follows.

Theorem 1.1. The Fibonacci cube �n, n ≥ 0, admits a perfect 
code if and only if n ≤ 3.

In the rest of this section we formally introduce the 
concepts needed, while in the next section Theorem 1.1 is 
proved. We conclude this note with some ideas for further 
research.

A Fibonacci string of length n is a binary string b1 . . .bn

with bi · bi+1 = 0 for 1 ≤ i < n. Fibonacci strings are thus 
binary strings that contain no consecutive 1s. A Fibonacci 
string of weight k is a Fibonacci string with precisely k ones. 
The Fibonacci cube �n , n ≥ 1, is the graph whose vertices 
are all the Fibonacci strings of length n, two vertices being 
adjacent if they differ in precisely one position. (In other 
words, �n is the subgraph of the n-cube Q n induced by 
all vertices that contain no two consecutive 1s.) For conve-
nience we also set �0 = K1.

By �n,k we denote the vertices of �n of weight k. It is 
easy to observe that

|�n,k| =
(

n − k + 1

k

)
.

For a more general result of this type see [16]. For i ∈ {0, 1}
we denote by �i

n,k the vertices of �n,k that start with i. Ob-

serve that the vertices of �0
n,k are of the form 0α, where α

is a Fibonacci string of weight k and length n − 1. Conse-
quently,

|�0
n,k| = |�n−1,k| =

(
n − k

k

)
.

By a similar argument we infer that

|�1
n,k| = |�n−2,k−1| =

(
n − k

k − 1

)
.

2. Proof of Theorem 1.1

It can be easily checked by hand that each of �0, �1, 
�2, �3 contains a perfect code and that none of �4 and �5
does. It remains to prove that �n does not admit a perfect 
code for any n ≥ 6. For the sake of this we first show:

Lemma 2.1. If n ≥ 6 and C is a perfect code of �n, then 0n /∈ C .

Proof. Suppose on the contrary that 0n ∈ C . Then all the 
vertices in �n,1 are dominated by 0n . Hence �n,2 ∩ C = ∅. 
Consequently, each vertex of �n,2 must be dominated by a 
vertex of �n,3. The only vertices in �n,3 that dominate the 

vertices in �1
n,2 are in �1

n,3. Since each vertex v ∈ �1
n,3 has 

precisely two neighbors in �1
n,2 we have

|C ∩ �1
n,3| =

|�1
n,2|
2

= n − 2

2
.

Therefore, the number of undominated vertices in �1
n,3 so 

far is

|�1
n,3| −

(n − 2)

2
=

(
n − 3

2

)
− (n − 2)

2
= n2 − 8n + 14

2
.

These vertices can only be dominated by the vertices 
of �1

n,4. Moreover, each such vertex dominates precisely 
three of the undominated vertices of �1

n,3. Hence we have 
that

|C ∩ �1
n,4| =

n2 − 8n + 14

6
.

But the last expression is not an integer. This contradiction 
proves the lemma. �

Suppose now that C is a perfect code of �n . Then 
by Lemma 2.1 we have that 0n /∈ C . This implies that 
|C ∩ �n,1| = 1. Denote with a this unique vertex. The re-
maining n − 1 vertices of �n,1 must be dominated by the 
vertices of �n,2. Since a vertex of �n,2 dominates precisely 
two vertices of �n,1, it follows that n is odd and that there 
are

|�n,2| − (n − 1)/2 − (d − 1)

=
(

n − 1

2

)
− (n − 1)/2 − (d − 1)

= (n2 − 4n − 2d + 5)/2 (1)

undominated vertices in �n,2 where d ∈ {n −2, n −1} is the 
degree of a. These vertices must be dominated by the ver-
tices of �n,3 and hence the expression (1) must be divisible 
by 3. Setting d = n − 1 and using the fact that n = 2k + 1
for some integer k, (1) is reduced to 2k2 − 4k + 1. Since 3
does not divide 2k2 − 4k + 1 for any k > 0, it follows that 
d = n − 2. Consequently, a /∈ {10n−1, 0n−11}. The fact that 
d = n − 2 implies that there are (n − 3)2/2 undominated 
vertices in �n,2 that need to be dominated by the vertices 
of �n,3. This implies that 6|(n − 3)2, that is, n = 6k + 3 for 
some k > 0.

In what follows we split the proof into two parts de-
pending on whether a starts with 00 or 01. Suppose first 
that a starts with 00. Then it dominates precisely n − 4
vertices of �0

n,2 and a single vertex of �1
n,2 (see Fig. 1.) 

In order to dominate �1
n,1 = {10n−1}, the perfect code C

must contain at least one vertex of �1
n,2. Moreover, since 

every vertex of �1
n,2 is adjacent to 10n−1, we must have 

|C ∩ �1
n,2| = 1. Since the vertex a dominates precisely one 

vertex in �1
n,2, there are |�1

n,2| − 2 = n − 4 vertices in �1
n,2

that must be dominated by the vertices in �1
n,3 and since 

each such vertex dominates precisely two elements of �1
n,2

it follows that C must contain (n − 4)/2 vertices of �1
n,3. 
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