
Journal of Computational Science 5 (2014) 126–134

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Statistical assertion: A more powerful method for debugging scientific
applications

Minh Ngoc Dinha,∗, David Abramsonb, Chao Jina

a Monash University, Clayton, Victoria, 3800, Australia
b University of Queensland, St Lucia, Queensland, 4072, Australia

a r t i c l e i n f o

Article history:
Received 5 October 2012
Received in revised form 9 December 2013
Accepted 15 December 2013
Available online 21 December 2013

Keywords:
Debugging
Assertion
Statistics
Parallel architecture

a b s t r a c t

Traditional debuggers are of limited value for modern scientific codes that manipulate large complex data
structures. Current parallel machines make this even more complicated, because the data structure may
be distributed across processors, making it difficult to view/interpret and validate its contents. Therefore,
many applications’ developers resort to placing validation code directly in the source program. This
paper discusses a novel debug-time assertion, called a “Statistical Assertion”, that allows using extracted
statistics instead of raw data to reason about large data structures, therefore help locating coding defects.
In this paper, we present the design and implementation of an ‘extendable’ statistical-framework which
executes the assertion in parallel by exploiting the underlying parallel system. We illustrate the debugging
technique with a molecular dynamics simulation. The performance is evaluated on a 20,000 processor
Cray XE6 to show that it is useful for real-time debugging.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Debugging large-scale scientific codes is difficult due to several
reasons. First, many scientific codes manipulate enormous multi-
dimensional data structures, which are often distributed across
parallel processes, and it is impractical for a user to trace prob-
lems by focusing on individual data elements. Second, the programs
often embody complex algorithms making them difficult for non-
experts to follow. Using sophisticated data-mining operations can
help identify outlier values in large amounts of program states.
However, sophisticated data-mining operations are often more
expensive to execute on a single processor. That leads to the perfor-
mance issue in parallel debugging. In this paper, we address these
issues and introduce a simple, yet scalable debugging technique.

1.1. Motivation

As more data is produced and gathered, statistics and data
patterning (or data mining) [1] is becoming an increasingly impor-
tant concept for transforming data into information. For example,
data mining is popular in a wide range of profiling practices,
such as marketing, finance, climate modeling, and earth sys-
tems [1]. In addition, most highly performance software, not only
generates raw data, but also produces patterning information in
forms of histograms, probability distributions, or data models (i.e.

∗ Corresponding author. Tel.: +61 3 9902 0388.
E-mail address: minh.ngoc.dinh@monash.edu (M.N. Dinh).

mathematical functions). These statistics not only give the users
great insights of the observed phenomena, but also sometimes dis-
play unusual details of the computation.

Our earlier work has demonstrated that ad hoc debug-time
assertions can assist in verifying program states at runtime because
it is not necessary to examine every value in a large data struc-
ture [2]. The study showed that in a number of cases, a parallel
computer can be used to execute the assertion logic, making it effi-
cient when used on large data structures and machines. Recently,
we recognized the importance of extracting statistical informa-
tion for debugging purposes while chasing an error in one of our
software tools (the debugger, in fact). Specifically, we generated a
performance model based on a set of simulations, and produced a
plot that summarized the model behavior with a two-dimensional
graph. This simple display highlighted an error, and we subse-
quently found a coding bug. Importantly, the error became obvious
not through the detailed examination of process state, as supported
by almost all debugging tools, but through a simple proxy – a graph
showing one derived variable against another. The location of the
bug could be deduced quite accurately without viewing the source
code, because the graph contained sufficient information about the
type of error. This example highlights the potential of using statis-
tics instead of raw data to locate coding defects.

1.2. Statistical assertion

This paper introduces a new type of ad hoc debug-time asser-
tion called a Statistical Assertion. A statistical assertion is defined
as a predicate consisting of two data models in the form of either

1877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2013.12.002

dx.doi.org/10.1016/j.jocs.2013.12.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2013.12.002&domain=pdf
mailto:minh.ngoc.dinh@monash.edu
dx.doi.org/10.1016/j.jocs.2013.12.002

M.N. Dinh et al. / Journal of Computational Science 5 (2014) 126–134 127

statistical primitives (e.g. mean or standard deviation values) or
data models (e.g. histograms or density functions). Statistical asser-
tions allow the user to compare data pattern information between
two data structures, instead of comparing the exact values like the
assertions used in previous work [2,3]. For example, it is possible
to assert that the mean value of a large dataset is between certain
bounds during the life of a function call, or the number of elements
in an array needs to be in a specific range. More advanced statisti-
cal assertions allow the user to state that the histogram formed by
all elements in a specific dataset must be equivalent to a histogram
formed by another dataset, or assert that all elements in a dataset
should be normally distributed.

Statistical assertions are useful in debugging large scale scien-
tific problems because (1) they allow users to focus on the scientific
meaning of the computations instead of the exact data values pro-
duced by them, and (2) they reduce the complexity in debugging
stochastic processes, for example as found in Monte Carlo methods.
Statistics can be used to reflect scientific knowledge behind a com-
putation, thus by using statistical assertions; a user can integrate
such knowledge into the debugging process and transform it into
runtime invariants that ensure the correct execution of the code
at runtime. Failure to comply with such expectations will lead the
users to the incorrect computation. Furthermore, stochastic pro-
cesses pose a nontrivial difficulty in testing and debugging, because
the program state is often nondeterministic. However, if we disre-
gard the exact data values, the data patterns extracted from those
datasets are often deterministic. Statistical assertions allow the
users to capture such determinism, and make debugging stochas-
tic simulations more practical, while reducing the complexity of
processing raw data.

The essence of this approach is to (1) diminish the substantial
amount of raw data to manageable “blocks”; (2) alleviate the com-
plexity in managing data decomposition across a large number of
processors; and (3) leverage parallelism to make the system fast
enough for real time debugging. Statistical assertions can test the
‘statistical’ state of a large distributed array, and can be refined iter-
atively by the user in order to locate the source of an error. Because
evaluation is likely to be expensive, we propose a scheme that exe-
cutes the assertion in parallel, making assertions over large data
structures feasible. We also discuss how partial statistical results
are aggregated, and compared. These ideas are implemented in an
existing parallel debugger, Guard [4].

The paper is structured as follows. In Section 2, we discuss
related work and recent research in supporting scalable debug-
ging operations. We also describe several notable efforts in using
statistics for testing and verifying software correctness at runtime.
Section 3 presents a statistical-debugging framework which sup-
ports the creation of user-defined statistical models and functions.
Section 4 describes the required extension to the based parallel-
debugger Guard. Section 5 delivers case studies to demonstrate
sample use of the proposed techniques in debugging a molecular
dynamics application. The analysis and evaluation of the perfor-
mance obtained on a Cray XE6 system is provided in Section 6. We
conclude the paper in Section 7 with some discussion about future
enhancement.

2. Related work

The work discussed in this paper is a good example of
Zeller’s more general [5] scientific debugging method, in which
a user invents a hypothesis about program behavior, and then
tests it against an observation. Related work on the use of sta-
tistical hypothesis includes Zhou et al. [6], Daikon [7], and
DIDUCE [8]. They demonstrate that statistics-rule-based approaches
are very promising in detecting bugs that do not violate any

programming rules. However, they only work with sequential pro-
grams and are not evaluated in parallel. DMTracker [9] also employs
the statistics-rule-based technique and provides a solution for par-
allel applications. The tool can automatically detect the cause of
phenomena such as data corruption or deadlocks by observing data
movements between parallel processing threads. A more notable
example of applying statistics for debugging is the Statistical Debug-
ging technique developed by Liblit et al. [10]. The author argues that
stochastic failures can be reported multiple times and the infor-
mation, extracted from reporting data via various statistical and
modeling techniques, can be used to deduce the likely location of
the bugs. However, the goal of DMTracker and statistical debugging
technique is only to isolate a certain class of bugs namely program
runtime failure. They obviously cannot be used to identify bugs that
do not abort the operation of the program but silently corrupt the
final results.

For interactive debugging paradigm, DDT [11] supports the use
of a simple bar-code like snapshot to show the spread of values
for a given variable, while TotalView debugger [12] provides users
with a limited number of statistical functions including max/min,
mean, median, standard deviation, quartiles: first and third, and
upper/lower adjacent. These are statistical functions of the type we
envisage. In addition, TotalView’s TVScript allows users to perform
arbitrary actions at breakpoints, similar to the GDB’s conditional
breakpoints [13]. These are promising tools for monitoring sta-
tistical features of the application. However, with these tools, it
is difficult to reason about the collective state of a parallel pro-
gram. Our implementation in this work provides a parallel solution
implicitly.

3. Design of statistical assertions

The support for statistical assertions requires a framework that
addresses two issues. First, it needs to support a wide range of
useful statistics, and it is desirable to compute these in parallel
in order to provide real time debugging of large datasets. Second,
the framework should allow users to create arbitrary user-defined
data models. The following texts focus on these issues, respectively.
Details regarding the implementation are discussed in Section 4.

3.1. Split-phase statistical operation

The parallel computation of basic statistics such as average, max,
min is relatively straight forward; however, more complex statis-
tics require special handling. For example, given a dataset X, the
typical standard two-pass algorithm for computing standard devia-
tion [14] is not efficient in parallel, because it requires all elements
in X to be examined twice. Even though there are one-pass algo-
rithms that compute the standard deviation value, some of them are
numerically unstable. However, the pair-wise algorithm [14] pro-
vides much better accuracy. Given X = A ∪ B, one can compute the
variance in one pass by computing sample mean value � and the
sum of squares of differences from �, denoted as M2,i, for A and B
independently. These values can later be combined to calculate the
overall standard deviation value using the following formulas

M2,X = M2,A + M2,B + ı2 nAnB

nX
(1)

stdev =
√

M2,X

nX
(2)

This algorithm can be executed in two phases, and the first phase
can be parallelized (as depicted in Fig. 1). Therefore, we design the
statistical reduction process as a split-phase operation, as below. As
it turns out, this design actually maps well onto the client/server
architecture of our host debugger, as discussed in Section 4 [2].

Download English Version:

https://daneshyari.com/en/article/429385

Download Persian Version:

https://daneshyari.com/article/429385

Daneshyari.com

https://daneshyari.com/en/article/429385
https://daneshyari.com/article/429385
https://daneshyari.com

