
Journal of Computational Science 13 (2016) 26–36

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

DEVS-M: A discrete event simulation framework for MANETs

Fatih Çelik
Department of Computer Engineering, Sakarya University, Esentepe Campus, Serdivan, Sakarya, Turkey

a r t i c l e i n f o

Article history:
Received 21 July 2015
Received in revised form 29 October 2015
Accepted 27 November 2015
Available online 18 December 2015

Keywords:
Distributed network simulator
MANET
DEVS
DEVS-M

a b s t r a c t

The infrastructure required for mobile ad hoc networks (MANETs) should be continuously improved
because of the increasing number of wireless devices in the world. Therefore, modelling and simulation
is important for MANETs in order to detect problems that may arise when developing infrastructure
solutions. Studies in literature show that simulation tools developed for cable networks have been trans-
formed into MANET tools instead of developing MANET-specific simulation tools. In this paper, a simula-
tion framework for MANETs is designed using the DEVS-Suite simulator tool, which is based on discrete
event system specification (DEVS) formalism, and is used for the simulation of cable networks. A specific
wireless node architecture for the nodes that form MANETs is developed for a simulation framework.
In addition, the new framework includes a topography model to check the velocity and movements of
the nodes, packet models roaming in MANET, and visualisation area to observe simulation events. A cou-
pled model is generated by combining these two models. In addition, an ant colony-based load-balancing
scheme is developed to test the model. As a result, the simulation tool developed for MANETs aims to keep
memory consumption steady even when traffic and node intensity increases in simulators. The study also
aims to undertake load-balancing tests to obtain results compatible with the values in literature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The MANET is a continuously self-configuring, small infrastruc-
ture network of mobile devices connected by wireless connections
[1]. In recent years, MANETs have become widespread in all areas
of life because devices, such as television, mobile phones, tablets,
and computers are able to communicate with each other wire-
lessly. Therefore, the infrastructure required for MANETs should
be constantly improved owing to the increasing number of nodes.
Therefore, this development necessitated modelling and simula-
tion tools to verify and validate the protocols that are developed
for MANETs. The modelling and simulation tools developed for this
purpose allow testing of protocols designed for MANETs.

Simulation tools used in the literature for MANET modelling and
simulation were developed as MANET adaptations of simulation
tools that were improved to model cable computer networks [2].
Therefore, while the links in these tools were adapted to antenna
models, cable nodes were adapted to wireless nodes. One of the
difficulties observed in wireless nodes is the placement of the
nodes since wireless nodes are placed in networks randomly in
contrast to cabled nodes. In order to overcome this problem,
topology generators are adapted to fulfil wireless node placement
requirements. Another difficulty faced in wireless nodes is the

E-mail address: fatihc@sakarya.edu.tr

mobility of network nodes, whereas no mobility is possible in cable
nodes. Hence, the simulator that will be developed requires the
addition of a tool that does not exist in cable nodes. The developed
tool will be able to check both location and velocity information
for wireless nodes. Instantaneous change in the location of the
mobile node during mobility should be identified by the simulator,
depending on its velocity.

There are various simulators for MANETs in the literature and
the most commonly used simulator tool is the ns-2 [3]. The ns-
2 uses a pseudo random number generator (PRNG) as a topology
generator. Some errors occur in the transmission range during
node placement caused by the PRNG. This situation also shows
the importance of a topology generator. Another commonly used
simulator is OPNET [4]. OPNET is a simulator with commercial lim-
itations and therefore generates a high accuracy expectation [2],
which does not scientifically allow the formation of an experimen-
tal framework. There are also different simulator tools written by
users themselves regarding specific experiments.

In this paper, a developed MANET simulation framework based
on DEVS [5] is presented. This simulation framework can run dis-
tributed and parallel architectures as discrete events based on DEVS
formalism [6]. This MANET simulation framework called ‘DEVS-M’
is developed using the DEVS-Suite network simulator [7].

The MANET simulation framework can serve parallel and dis-
tributed architectures. As opposed to other simulators, creation of
scenarios and monitoring the results of these scenarios are easier

http://dx.doi.org/10.1016/j.jocs.2015.11.012
1877-7503/© 2015 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.jocs.2015.11.012
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2015.11.012&domain=pdf
mailto:fatihc@sakarya.edu.tr
dx.doi.org/10.1016/j.jocs.2015.11.012

F. Ç elik / Journal of Computational Science 13 (2016) 26–36 27

with the help of these developed tools. It is also possible to use it as
a web-based MANET simulation framework in distance education
since it is independent of platforms and is open source. It is dif-
ferent from other simulators since it does not change the memory
consumption even when the load in simulators increases. AntODV
[8] was inspired by an ant colony [9] load-balancing scheme based
on the AODV [10] approach, which was developed to present the
superior characteristics of the simulation framework.

Section 2 briefly reviews DEVS formalism. Section 3 explains the
atomic node model, topography atomic model, packets, coupled
model, topology generator developed for the MANET simulation
framework, modelling processes, and architecture of visualisation
area tools. Section 4 provides information on the simulation param-
eters necessary for the verification and validation of the developed
MANET simulation framework. Section 5 graphically presents the
results obtained in the experiments and provides performance
assessments for them. Section 6 provides conclusions.

2. Discrete event modelling with DEVS

The modelling and simulation method used in this study was
first presented for the modelling and analysis of discrete event sys-
tems by Dr. Bernard P. Zeigler in 1976 in his book titled Theory
of Modeling and Simulation. The DEVS defines system behaviour in
two different levels: atomic and coupled DEVS. At the lowest level,
DEVS defines the autonomous behaviour of a discreet event system,
such as the transitions between sequential cases, how the system
responds to an external input (events), and how it evaluates the
output (events) [5]. An atomic DEVS model is defined as follows.

M =< X, Y, S, ta, ıint , ıext, � >

The set of input events is X, while Y is the set of output events, S is
the set of sequential states and ta : S → T∞ is the time advance func-
tion, which is used to determine the lifespan of a state. Moreover,
ıext : Q× X → S is the external transition function, which defines how
an input event changes the state of the system, where Q = {(s, te)|s ∈
S, te ∈ (T ∩ [0, ta(s)])} is the set of total states, and te is the elapsed
time since the last event. In addition, ıint : S→ S is the internal tran-
sition function, which defines how a state of the system changes
internally (when the elapsed time reaches the lifetime of the state).
Further, � : S → Y� is the output function where Y� = Y ∪ {�} and �/∈
Y is a silent event or an unobserved event. This function defines how
a state of the system generates an output event (when the elapsed
time reaches the lifetime of the state) [5].

Coupled DEVS defines a system as a network of components
at a higher level. The components may be atomic DEVS models
or coupled DEVS models. Couplings show how components affect
each other. Output events of a component may be the input events
of another component. It is possible to design an atomic DEVS for
each coupled DEVS, and atomic or coupled DEVS models can be
displayed by an atomic DEVS [5]. A hierarchical modelling structure
is supported since coupled DEVS can have other coupled DEVS
components [11]. A coupled DEVS model is defined as follows.

N =< X, Y, D, {Mi}, Cxx, Cyx, Cyy, Select >
The set of input events is X, while Y is the set of output

events, and D is the named set of sub-components. In addition,
{Mi} is the set of sub-components, where for each i ∈ D, Mi there
can be either an atomic DEVS model or a coupled DEVS model.
Moreover, Cxx ⊆ X ×

⋃
i ∈ DXi is the set of external input couplings,

and Cyx ⊆
⋃

i ∈ DYi ×
⋃

i ∈ DXi is the set of internal couplings, while
Cyy :

⋃
i ∈ DYi → Y� is the external output coupling function, and

Select:2D→ D is the tie-breaking function, which defines how to
select the event from the set of simultaneous events.

Advantages of DEVS formalism are strong connections between
components, hierarchical design, event-based simulation, object-
oriented adaptation, reduced design time, more developed tests,

higher quality models, easier experimentation opportunities,
autonomous opportunities for working in parallel/real time, ease
of verification and validation, interoperability and reuse, modelling
using more than one method, and high performance [12]. This study
presents the performance achievements of the DEVS method, espe-
cially on parallel and distributed systems, such as networks, by
utilising the advantages cited.

3. The components of the DEVS-M

Each node is designed in a way to process the packets in the
formed topology and to route these packets to desired directions.
Nodes are atomic models that can connect to and communicate
with the nodes included in the coverage area in the system as
in reality. Behavioural characteristics of the nodes include the
bandwidth to process the traffic, processing velocity, and limited
buffering size to process traffic. Network components of various
capacities can be formed by changing the defined characteristics,
and different network scenarios can be developed [11]. The wire-
less network model has two different types of atomic model: a
network coupled model and experimental frame. The node atomic
model and topography atomic model form coupled node models.
Furthermore, the experimental frame model also has event genera-
tor and event transducer atomic models (see Fig. 1). Every wireless
node in the wireless network model has an antenna model that
allows traffic flow in a certain radius that is modelled as a wireless
node with the ability to route them to suitable targets. The wire-
less nodes are atomic DEVS models connected to each other with
wireless network connections.

3.1. Atomic node model

Wireless nodes are designed as atomic nodes, which can gen-
erate and route data packets and control packets. Fig. 2 presents
the wireless node architecture in which the most important mod-
ule is the routing layer. This module is composed of tables that
store the shortest route for the data packet. Atomic nodes consist
of energy, topography, processing time, queue, packaging, node
IP, and routing. Fig. 3 displays the relationships between classes,
which compose the architecture of an atomic node. The atomic
DEVS model for a node is given as follows. Node=< X, Y, S, s0, ta,
ıext, ıint, � > such that

X = {?IIZC receive, DATA receive,

DATA received}
Y = {!IIZC send, GIZC send,

DATA forward, DATA send,

DATA updated}
S = {(d, �)|d ∈ {wait, IIZC send,

GIZC send, DATA forward,

DATA send, DATA updated},
� ∈ T∞}

s0 = (DATA send, 0.01)

ta(s) = � forall s ∈ S

ıext(((wait, �), te), ?DATA receive) = (DATA forward, 0.01)

ıint (DATA forward, �) = (wait, ∞)

ıint (wait, �) = (DATA forward, 0.01)

�(DATA forward, �) =!DATA forward

�(wait, �) = �

Download English Version:

https://daneshyari.com/en/article/429480

Download Persian Version:

https://daneshyari.com/article/429480

Daneshyari.com

https://daneshyari.com/en/article/429480
https://daneshyari.com/article/429480
https://daneshyari.com

