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a  b  s  t  r  a  c  t

In  this  paper,  we  propose  a novel  sparse  least  squares  support  vector  machine,  named  ramp  loss  least
squares  support  vector  machine  (RLSSVM),  for binary  classification.  By  introducing  a non-convex  and
non-differentiable  loss  function  based  on the  ε-insensitive  loss  function,  RLSSVM  has  several  improved
advantages  compared  with  the  plain  LSSVM:  firstly,  it has  the  sparseness  which  is  controlled  by  the
ramp  loss,  leading  to its better  scaling  properties;  secondly,  it can  explicitly  incorporate  noise  and  outlier
suppression  in  the training  process,  and  thirdly,  the  non-convexity  of  RLSSVM  can  be  efficiently  solved
by  the  Concave-Convex  Procedure  (CCCP).  Experimental  results  on  several  benchmark  datasets  show  the
effectiveness  of  our  method.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Support vector machines (SVMs), being computationally pow-
erful tools for supervised learning, are successfully and widely used
in classification and regression in a variety of real-world applica-
tions [1–5]. One efficient extension of SVMs is the least squares
support vector machine (LSSVM), see [6,7], which only needs to
solve a linear system instead of a quadratic programming problem
(QPP) in standard SVMs. Extensive empirical comparisons [8] show
that LSSVMs obtain good performance on various classification and
regression problems. LSSVMs have been studied extensively, see for
example, [9–12].

However, there are still several disadvantages in the standard
SVMs or LSSVMs: First, for the standard SVMs or LSSVMs, the con-
vex loss functions such as the Hinge loss function or the quadratic
loss function are applied, then the convex models are constructed
and many convex optimization techniques have been employed
to solve them [13–18]. However, researchers have shown that
classical SVMs or LSSVMs are sensitive to the presence of out-
liers and yield poor generalization performance, since the outliers
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tend to have the largest losses according to the character of the
convex loss functions, then are always playing dominant roles
in determining the decision hyperplane. Second, another obvious
limitation of LSSVMs is that, unlike the standard SVM employing
soft-margin loss function for classification and ε-insensitive loss
function for regression, LSSVMs usually looses the sparseness by
using a quadratic loss function.

There are a lot of papers in the literature considering the above
two issues so far. As for the robustness, there are several methods
to construct the robust models [19,6,20–25], of which the ramp
loss function has been investigated widely in the theoretical lit-
erature in order to improve the robustness of SVMs [23,25]. They
constructed a ramp loss support vector machine (RSVM) by tak-
ing the Ramp loss instead of the Hinge loss in the classical SVM,
the Ramp loss function limits its maximal loss value distinctly and
can put definite restrictions on the influences of outliers so that
it is much less sensitive to their presence. However, it will also
cause the objective of SVMs losing convexity, as a consequence, the
Concave-Convex Programming (CCCP) procedure is applied to solve
a sequence of convex problems to produce faster and sparser SVMs.
As for the sparse one, a range of methods for LSSVMs are available
and can be roughly divided into two major classes: Pruning and
Fixing size ones, which are summarized in [26]. For the first class, it
imposes the sparseness by gradually omitting the least important
data from the training set and re-estimating the LSSVMs, which is
time consuming; For the second class, it is assumed that the weight
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Fig. 1. The Ramp Loss function (left) can be decomposed into the sum of the convex Hinge Loss (middle) and a concave loss (right).

vector w can be represented as a weighted sum of a limited number
(far less than the size of the training set) of basis vectors, which is
a rough approximation and not theoretically guaranteed.

In this paper, by introducing a non-convex and non-
differentiable loss function instead of the quadratic loss function
to LSSVM, a robust and sparse LSSVM is constructed and named
RLSSVM. Compared with the original LSSVM, RLSSVM can explicitly
incorporate noise and outlier suppression in the training process,
has less support vectors and the increased sparsity leads to its bet-
ter scaling properties. Similar to RSVM, RLSSVM is non-convex and
the CCCP procedure is applied to solve a sequence of convex QPPs.
Experimental results on benchmark datasets confirm the effective-
ness of the proposed algorithm.

The rest of this paper is organized as follows. Section 2 briefly
dwells on the Hinge loss SVM, Ramp Loss SVM and LSSVM. Sec-
tion 3 proposes the RLSVM and discusses its properties. Section
4 presents the experimental results and Section 5 contains con-
cluding remarks.

2. Background

In this section, we briefly introduce the Hinge loss SVM, Ramp
Loss SVM and LSSVM.

2.1. Hinge Loss SVM

Consider the binary classification problem with the training set

T = {(x1, y1), . . .,  (xl, yl)} (1)

where xi ∈ Rn, yi ∈ Y  = {1, −1}, i = 1, . . .,  l, the standard SVM
relies on the classical Hinge loss function (see Fig. 1(b))

Hs(z) = max(0,  s − z) (2)

where the subscript s indicates the position of the Hinge point, to
penalize examples classified with an insufficient margin and results
in the following primal problem

min
w,b

1
2

‖w‖2 + C

l∑
i=1

H1(yif (xi)), (3)

where f(x) is the decision function with the form of
f(x) = (w · �(x)) + b, and �(·) is the chosen feature map, often
implicitly defined by a Mercer kernel K(x, x′) = (�(x) · �(x′)) [3].
For the choice of the kernel function K(x, x′), one has several
possibilities: K(x, x′) = (x · x′) (linear kernel); K(x, x′) = ((x · x′) + 1)d

(polynomial kernel of degree d); K(x, x′) = exp(− ‖ x − x′ ‖ 2/�2) (RBF
kernel); K(x, x′) = tanh(�(x · x′) + �) (Sigmoid kernel), etc.

Due to the application of the Hinge loss, standard SVM has the
sensitivity to outlier observations since they will normally have
the largest hinge loss, thus the decision hyperplane is inappro-
priately drawn toward outlier samples so that its generalization
performance is degraded [27]. Another property of the Hinge Loss
function is that the number of Support Vectors (SVs) scales lin-
early with the number of examples [28], and since the SVM training
and recognition times grow quickly with the number of SVs, it is
obviously that SVMs cannot deal with very large datasets.

2.2. Ramp Loss SVM

In order to increase the robustness of SVM and avoid converting
the outliers into SVs, the Ramp Loss function [23] (see Fig. 1(a)),
also known as the Robust Hinge Loss

Rs(z) =

⎧⎨
⎩

0, z > 1

1 − z, s � z � 1

1 − s, z < s

(4)

was introduced to replace the Hinge loss function, by making the
loss function flat for scores z smaller than a predefined value s < 1.
Rs(z) can be decomposed into the sum of the convex Hinge Loss and
a concave loss (see Fig. 1(c)),

Rs(z) = H1(z) − Hs(z), (5)

therefore the primal problem of the Ramp Loss SVM (RSVM) can be
formulated as

min
w,b

1
2

‖w‖2 + C

l∑
i=1

Rs(yif (xi))

= 1
2

‖w‖2 + C

l∑
i=1

H1(yif (xi))︸ ︷︷  ︸
convex

−C
l∑
i=1

Hs(yif (xi))︸  ︷︷  ︸
concave

, (6)

which can be solved by the CCCP Procedure [29].

2.3. LSSVM

For the given training set (1), the primal problem of standard
LSSVM to be solved is

min
w,b,

1
2

‖w‖2 + C

2

l∑
i=1

Q (yif (xi) − 1), (7)
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