
Journal of Computer and System Sciences 80 (2014) 1350–1358

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

A linear kernel for the complementary maximal strip recovery
problem

Haitao Jiang a,b, Binhai Zhu c,∗
a School of Computer Science and Technology, Shandong University, Jinan 250100, China
b School of Mathematics, Shandong University, Jinan 250100, China
c Department of Computer Science, Montana State University, Bozeman, MT 59717, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 September 2012
Received in revised form 26 January 2014
Accepted 4 March 2014
Available online 14 March 2014

Keywords:
Maximum strip recovery
FPT algorithm
Kernelization

In this paper, we compute the first linear kernel for the complementary problem of
Maximal Strip Recovery (CMSR) — an NP-hard problem in computational genomics. Let
k be the parameter which represents the size of the solution. The core of the technique
is to first obtain a tight 18k bound (for the method) on the parameterized solution search
space, which is done through a mixed global rules and local rules, and via an inverse
amortized analysis. Then we apply additional data-reduction rules to obtain a 78k kernel
for the problem, which is again tight for the method. Combined with the known algorithm
using bounded degree search, we obtain the best Fixed-Parameterized-Tractable algorithm
for CMSR to this date, running in O (2.36kk2 + n2) time.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

FPT and kernel. The rapid development of the parameterized complexity theory greatly enhances our understanding be-
yond NP-completeness and the traditional computational complexity theory [6,22,13]. For many theoretically intractable
applications, FPT (fixed-parameter tractable) algorithms can be very effective [7,11,21].

Basically, a fixed-parameter tractable (FPT) algorithm for a decision problem Π with parameter k is an algorithm which
solves the problem in O ( f (k)nc) = O ∗( f (k)) time, where f is any function only on k, n is the input size and c is some fixed
constant not related to k. FPT also stands for the set of problems which admit such an algorithm.

A useful technique in parameterized algorithmics is to provide polynomial time executable data-reduction rules that lead
to a problem kernel. A data-reduction rule replaces (I,k) by an instance (I ′,k′) in polynomial time such that: (1) |I ′| � |I|,
k′ � k, (2) (I,k) is a Yes-instance if and only if (I ′,k′) is a Yes-instance, and (3) |I ′| � g(k) for some function g . |I ′| is
called the size of the kernel for the problem instance (I,k). A set of polynomial-time data-reduction rules for a problem are
applied to an instance of the problem to achieve a reduced instance termed the kernel. A parameterized problem is FPT if
and only if there is a polynomial time algorithm applying data-reduction rules that reduce any instance of the problem to a
kernelized instance of size g(k).

Kernelization is a very useful tool for designing efficient FPT algorithms [9,14]. Loosely speaking, kernelization means
the reduction of the problem instance size to a function of k (k is the parameter throughout this paper). In reality, a small
(especially a small linear) kernel can make it feasible to use some traditional method like branch-and-bound or ILP, so it is
always meaningful. On the other hand, there are various problems which do not admit small (or even polynomial) kernels
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G1 = 〈1,2,3,4,5,6,7,8,9,10,11,12〉
G2 = 〈−9,−4,−7,−6,8,1,3,2,−12,−11,−10,−5〉
S1 = 〈1,2〉
S2 = 〈6,7,9〉
S3 = 〈10,11,12〉
π1 = 〈1,2,3〉
π2 = 〈−2,1,−3〉
G�

1 = 〈1,2,6,7,9,10,11,12〉
G�

2 = 〈−9,−7,−6,1,2,−12,−11,−10〉

Fig. 1. An example for the problem MSR and CMSR. MSR has a solution size of eight (with d = 3 strips in G�
1 and G�

2; i.e., (1,2), (6,7,9) and (10,11,12)).
CMSR has a solution size of four: the deleted markers are 3, 4, 5 and 8.

unless the polynomial hierarchy collapses to its third level [1,8,10,12]. More information about parameterized complexity
can be found in the monographs [7,11,21].

In the Complementary Maximal Strip Recovery (CMSR) problem, we need to delete at most k letters from the two
input sequences (signed permutations) such that the remaining letters all form into strips (or maximal common substrings
of length at least two, some could be in negated and reversed form). To this date, there are two bounded search tree
algorithms running in O ∗(3k) [17] and O ∗(2.36k) [3] respectively for CMSR, but no (linear or even polynomial) kernel is
known. Part of the reason that a (linear) kernel is elusive for the CMSR is that the only known local rule (see Lemma 1, i.e.,
‘long’ maximal common substrings can be kept as strips) is not enough to establish any polynomial kernel.

In this paper, we obtain a linear 78k kernel for CMSR. The core of our idea is to first bound the parameterized solution
search space (i.e., the set of letters, whose size is a function of k, from which an optimal solution can be obtained). By
applying a set of global rules (together with the local rule induced by Lemma 1), we show that this space is of size at most
18k. On top of this we can build successfully the linear kernel of size 78k for CMSR.

This paper is organized as follows. In Section 2, we define the MSR and CMSR problems and the corresponding concepts
for FPT formally. In Section 3, we derive the 78k kernel bound for CMSR. In Section 4, we close the paper with several open
problems.

2. Preliminaries

MSR and CMSR. Maximal Strip Recovery (MSR) is a problem originally proposed by the David Sankoff group to eliminate
noise and ambiguities in genomic maps [5,24]. In comparative genomics, a genetic map (interchangeably, a sequence) is
represented by a sequence of distinct gene markers (interchangeably, letters). A gene marker can appear in two different
genomic maps, in either positive or negative form. A strip (syntenic block) is a sequence of distinct markers that appear
as subsequences in two maps, either directly or in reversed and negated form. Given two genetic maps G1 and G2, the
problem Maximal Strip Recovery (MSR) [5,24] is to find two subsequences of d strips (each of length at least two), denoted
as G�

i , for i = 1,2, and find two signed permutations πi of 〈1, . . . ,d〉, such that each sequence G�
i = Sπi(1) . . . Sπi(d) (here

S− j denotes the reversed and negated sequence of S j) is a subsequence of Gi , and the total length of the strips S j is
maximized. Intuitively, those gene markers not included in G�

1 and G�
2 are noise and ambiguities. The complementary

problem of deleting the minimum number of noise and ambiguous markers to have a feasible solution (i.e., every remaining
marker must be in some strip) is exactly the complement of MSR, which will be abbreviated as CMSR.

We refer to Fig. 1 for an example. In this example, each integer represents a gene marker.
Not surprisingly, in [23], both MSR and CMSR were shown to be NP-complete. Most recently, MSR was shown to be

APX-hard [2,15] and CMSR was also shown to be APX-hard [16]. For positive results, in [5,24], some heuristic approaches
based on MIS and Max Clique were proposed. In [4], a factor-4 polynomial-time approximation algorithm was proposed for
MSR. In [17], a factor-3 polynomial-time approximation algorithm was proposed for CMSR and an O ∗(3k) FPT algorithm was
proposed for CMSR (the latter improves and corrects an FPT bound in [23]). Recently, the approximation factor for CMSR
was improved to 2.33 [20] and the corresponding FPT algorithmic bound was improved to O (2.36kn2) [3]. In this paper, we
will focus only on the complement of MSR, or the CMSR problem.

3. A linear kernel for CMSR

Our idea for constructing the linear 78k kernel for CMSR is based on first identifying the parameterized solution search
space for CMSR. Formally, a parameterized solution search space for the CMSR problem is a subset S of the markers in G1, G2
such that we only need to delete k markers in S to obtain some optimal sequences G�

1 and G�
2; moreover, |S| � g(k) for

some function g . Once an S (of size 18k) is obtained, it is relatively easy to obtain the linear kernel.
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