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a  b  s  t  r  a  c  t

A  brief  review  of some  recent  variable-fidelity  aerodynamic  shape  optimization  methods  is  presented.
We  discuss  three  techniques  that—by  exploiting  information  embedded  in  low-fidelity  computational
fluid  dynamics  (CFD)  models—are  able  to  yield  a satisfactory  design  at  a  low  computational  cost,  usu-
ally  corresponding  to  a few  evaluations  of  the  original,  high-fidelity  CFD  model  to  be  optimized.  The
specific  techniques  considered  here  include  multi-level  design  optimization,  space  mapping,  and  shape-
preserving  response  prediction.  All of them  use  the same  prediction–correction  scheme,  however,  they
differ  in  the  way  the  low-fidelity  model  information  it utilized  to  construct  the  surrogate  model.  The
presented  techniques  are  illustrated  using  three  specific  cases  of  transonic  airfoil  design  involving  lift
maximization  and  drag  minimization.
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1. Introduction

Aerodynamic (or hydrodynamic) shapes and surfaces are
encountered in numerous engineering systems, such as aircraft,
automobiles, ships, rockets, bicycles, turbines, and pumps; just to
name a few. The task of the aerodynamic engineer is to find a
shape (or adjust the existing one) that improves a given aerody-
namic measure of merit while adhering to appropriate constraints.
The complexity of engineering systems is growing and computer
simulations are needed to provide a reliable evaluation of system
performance. Given the nonlinear behavior of fluid systems it is
often an impossible task to improve a given design by using a hands-
on approach. Numerical design techniques are, therefore, essential
to assist the engineer in solving the challenging task. Aerodynamic
shape optimization (ASO) involves the use of search algorithms for
the design of aerodynamic surfaces. This paper provides a review of
recent progress in this field. In particular, several variable-fidelity
optimization algorithms, which have been shown to be very effi-
cient, will be described and compared with benchmark techniques.

Hicks et al. [1] are generally credited for the first practical appli-
cation of ASO. They used a conjugate-gradient method to design
two-dimensional airfoil shapes in transonic flow. Later, Hicks
and Henne [2] extend the work to three-dimensional transonic

∗ Corresponding author. Tel.: +1 515 294 6549.
E-mail address: leifur@iastate.edu (L. Leifsson).

wing design with a steepest-descent gradient method. Nowadays,
gradient-based methods are considered the state-of-the-art in ASO
and are the most widely used approaches; see for example [3–6].
The key to using gradient-based ASO is the adjoint approach, first
introduced by Pironneau [7], and later developed for aerodynamic
design by Jameson [8]. The main advantage is that the cost of a
gradient calculation can be made nearly independent of the num-
ber of design variables. This opens the gateway for applying ASO to
problems with a large design space.

Various other types of algorithms are used for ASO, such as
derivative-free methods, one-shot methods, and surrogate-based
methods. Evolutionary algorithms, such as genetic algorithms, are
the most popular derivative-free methods for ASO; see for example
Holst and Pulliam [9], and Epstein and Peigin [10]. The funda-
mental advantage of evolutionary algorithms (or, more broadly,
population-based metaheuristics) over gradient-based ones is their
ability to perform global search. However, this comes at a price
since a large number of model evaluations are needed, especially
for a large design space. One-shot methods are based on the same
Lagrangian formulation as the gradient-based methods, but the
flow equations and the first-order optimality conditions are solved
simultaneously, and, thereby, avoiding repeated flow and gradient
evaluations. An overview of the approach can be found in Gun-
zburger [11] and applications can be found in Gatsis and Zingg [12],
and Iollo et al. [13].

In surrogate-based optimization (SBO), a computationally
expensive model is replaced by a cheap surrogate model [14,15].
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The main objective is to accelerate the optimization process and
obtain an optimized design by using fewer evaluations of the
expensive model. Typically, the surrogates are functional ones, i.e.,
constructed by using design of experiments and data fitting. A vari-
ety of techniques are available to create function-approximation
surrogate models. These include polynomial regression [14], radial
basis function interpolation [15], kriging [16], and support vec-
tor regression [17]. Function-approximation models are versatile,
however, they normally require substantial amount of data sam-
ples to ensure good accuracy. Examples of SBO with various
function–approximation models related to aerodynamic design can
be found in Forrester et al. [18], Jouhoud et al. [19], and Brooks et al.
[20].

Variable-fidelity optimization (VFO) refers to a certain type
of SBO where the surrogate models are constructed using cor-
rected physics-based low-fidelity models [21–29]. The low-fidelity
models can be obtained using one of, or a combination of the
following: simplified physics models (also called variable-fidelity
physics models), the high-fidelity model with a coarser computa-
tional mesh discretization (called variable-resolution models), and
relaxed flow solver convergence criteria (called variable-accuracy
models). The surrogate model needs to be a reliable representation
of the high-fidelity model. This is typically achieved by correct-
ing the low-fidelity model. Examples of correction techniques
for aerodynamic models include space mapping (SM) [24,27],
shape-preserving response prediction (SPRP) [25,28], and adaptive
response correction (ARC) [29]. The key benefit of the VFO approach
is that compared to function-approximation surrogates, less high-
fidelity model data may  be needed to construct a physics-based
one to obtain a given accuracy level, which will lead to improved
algorithm efficiency.

In this paper, we provide a brief summary of recently developed
VFO algorithms for the design of aerodynamic surfaces. In particu-
lar, we describe the multi-level optimization (MLO) algorithm [23],
and the SM [24] and SPRP [28] correction techniques. The algo-
rithms are applied to aerodynamic shape optimization of transonic
airfoils.

2. Aerodynamic shape optimization

This section provides a discussion on the basic properties and
characteristics of aerodynamic surfaces pertaining to the geom-
etry and the performance measures, as well as an example of
design objectives. A mathematical formulation of the ASO problem
is given.

2.1. Basic characteristics of aerodynamic surfaces

Aerodynamic shapes are typically described by a set of param-
eters and shape functions. For example, the aircraft wing shown in
Fig. 1 can be described on one hand by planform variables, such as
the span (b), sweep (�), and chord lengths (c) shown in Fig. 1(a),
and, on the other hand by the airfoil shapes at each spanstation,
such as the root, kink, and tip. Each airfoil section, such as the
one in Fig. 1(b), can be described by a set of shape functions and
parameters.

2.2. Aerodynamic performance metrics

The measure of merit is a quantity that characterizes the
performance of the aerodynamic surface. The characteristics of
an aerodynamic surface are typically represented with the non-
dimensional coefficients of forces, pressures, and moments acting
on it, such as the coefficients of lift (Cl), drag (Cd), pressure (Cp), and
pitching moment (CM).

The performance metrics are, typically, obtained by aerody-
namic analysis of the streamlined surfaces through computational
fluid dynamics (CFD) simulations. CFD models contain, in general,
the following elements: geometry modeling and parameterization,
computational grid generation, flow solution, and a calculation of
the measures of merit. The entire process is automated and inte-
grated within an optimization framework. The simulation of the
flow about a typical transport wing could take around 24 h (assum-
ing a parallel computation on 8 processors). Obviously, a more
powerful hardware will reduce the computational time. A com-
putation of the two-dimensional flow past an airfoil needs around
0.5 million grid cells and takes around half an hour (on a similar
machine).

Typically, the objective is to minimize the drag. For example, in
the design of transonic wings one of the main objectives is to mini-
mize the drag induced by a pressure shock, such as the one shown in
Fig. 2. Often, in low speed design the objective is to maximize the
lift. Maximization of the lift to drag ratio can also be considered.
Anderson [30] provides an excellent discussion of aerodynamic
design of transonic airfoils and wings.

2.3. Constraints

There can be constraints pertaining to various aspects of the
engineering system under consideration. Aircraft design is highly
multi-disciplinary and the constraints can be related to the aerody-
namics, structures, propulsion system, and control systems. As all
the disciplines are highly coupled, ASO needs to account for that in
some way. For example, the wings of an aircraft have many struc-
tural, mechanical, and electrical components. There needs to be
space for these components. This is often accounted for in ASO by
thickness constraints.

2.4. Problem formulation

ASO can be formulated as a constrained nonlinear minimization
problem, i.e., for a given operating condition, solve

x∗ = argmin
x

H (f (x)) ,  s.t.gj (x) ≤ 0, hk (x) = 0, l ≤ x ≤ u, (1)

where H is the objective function, f(x) is the high-fidelity model, x ∗
is the optimized design, x is the design variable vector (describing
the airfoil shape), arg min  represents minimization, gj(x) are the
inequality constraints with j = 1,.  . .,  M,  hk(x) are the equality con-
straints with k = 1,. . .,  N, and l and u are the lower and upper bounds
of the design variables, respectively.

The detailed formulation then depends on the particular design
scenario. Typically, lift maximization and drag minimization can

Fig. 1. Nomenclature for typical transonic aircraft wing geometry, (a) planform view, (b) airfoil section.
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