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a  b  s  t  r  a  c  t

Investigating  congestion  in  train  rapid  transit  systems  (RTS)  in  today’s  urban  cities  is  a  challenge  com-
pounded  by  limited  data  availability  and  difficulties  in model  validation.  Here,  we  integrate  information
from  travel  smart  card  data,  a mathematical  model  of  route  choice,  and  a  full-scale  agent-based  model  of
the  Singapore  RTS  to provide  a more  comprehensive  understanding  of the  congestion  dynamics  than  can
be  obtained  through  analytical  modelling  alone.  Our  model  is  empirically  validated,  and  allows  for  close
inspection  of  congestion  and  scaling  dynamics.  By adjusting  our  model,  we  can  estimate  the  effective
capacity  of the  RTS trains  as  well  as replicate  the penultimate  station  effect,  where  commuters  travel
backwards  to  the  preceding  station  to catch  a seat,  sacrificing  time  for comfort.  Using  current  data,  the
crowdedness  in  all 121  stations  appears  to  be distributed  log-normally.  We  find  that  increasing  the  cur-
rent  population  (2 million)  beyond  a  factor  of approximately  10%  leads  to  an exponential  deterioration
in  service  quality.  We  also  show  that  incentivizing  commuters  to avoid  the most  congested  hours  can
bring  modest  improvements  to the  service  quality.  Finally,  our model  can  be  used  to generate  simulated
data  for  statistical  analysis  when  such  data  are  not  empirically  available,  as is  often  the  case.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

To tackle rising population density in urban cities, transporta-
tion planners often construct train rapid transit systems (RTS) as
a first step. Yet continued population growth forces the RTS to
evolve towards increased complexity with more train lines added
to satisfy demand. With the increased complexity, planners are
confronted with the difficulty of predicting commuter ridership,
route choices, and also the various outcomes of the system during
disruptions. Moreover, increased station and train crowdedness in
RTS lead to congestion, commuter discomfort, trip delays, and low-
ered overall service quality standards. It is therefore imperative that
modern transportation models be capable of investigating not just
the issues of efficient, robust and scalable transportation, but also
of commuter comfort and satisfaction.

The introduction of smart card ticketing in RTS has serendip-
itously enabled large-scale data analytics into commuter travel
behaviour [1,17]. Analytical and regression models have been
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developed to estimate commuters’ spatio-temporal density [20],
identification of boarded trains [10], travel patterns [4], and transit
use variability [14]. Yet, it is noted that the information captured
by smart cards has limitations [17]; for example, most datasets do
not contain routing information as they capture information only
at the entry and egress points of journeys.

In contrast to analytical and regression models, agent-based
models (ABM) strive to model each individual agent in a man-
ner most natural to the system at hand [3]. Essentially, an agent
is autonomous and formulates decisions and interacts with other
agents directly. By directly replicating the mechanics of the sys-
tem, an ABM permits the observation of emergent phenomena that
arise from the interactions of the agents with each other [3] – pro-
vided the mechanics are correctly characterized and the model is
well-calibrated.

ABM has seen recent success in modelling large-scale trans-
portation [7,15,21]. However, there are not many studies which
incorporate smart card data to drive RTS demand for better calibra-
tion. In our previous work [11], we  had leveraged upon anonymized
travel smart card transactional data to synthesize travel demand for
a smaller-scale agent-based model of the Singapore transit system
involving only one of the operational train lines, and achieved a very
close match between the simulated and empirical travel duration
distributions. In that work, we also investigated the dynamics of
the smaller-scale system with regard to population growth.
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Fig. 1. Singapore rail transit system. The four MRT  lines and three LRT lines span-
ning 121 stations are shown. For each line, the year of first operation is shown in
parentheses in the legend.

Here, we extend our previous work [11] by: (1) expanding the
model to cover all seven operational lines; (2) adding a route-choice
mechanism inferred statistically from empirical travel duration dis-
tributions [13]; (3) incorporating station-specific walk-times; (4)
investigating dynamics that were not directly measurable in our
dataset, such as station crowdedness; (5) estimating the effective
train capacity; (6) modelling the penultimate station effect; and
(7) running further population scaling scenarios. We  validate our
model by ensuring the travel duration distributions generated from
our simulations are well-calibrated to the empirical dataset. This
would lend strength to any inferences derived from our scenar-
ios. Apart from these goals, ultimately, we strive to construct a
simulation platform that can be used to evaluate the efficacy of pro-
posed strategies in tackling current and future urban transportation
issues.

Our experiments in this work are focused on the Singapore rail
transit system, which began operations in 1987 and is now one of
the busiest RTS in the world. Despite the focus, our approach can be
applied to other rail transit systems in the world, as we  do not utilize
any Singapore-specific mechanics or assumptions in our model.

2. Data

Our model is dependent on data for the following purposes: (1)
to construct the transit infrastructure, (2) to instantiate the com-
muter agents corresponding to the actual travel demand, (3) to cal-
ibrate the travel time components of the network, and (4) to accu-
rately model the commuters’ decision making (e.g., route choice).

We  model the Singapore rail transit system in our experiments.
The Singapore RTS comprises two train systems: the Mass Rapid
Transit (MRT) system consisting of four standard-gauge lines span-
ning 90 stations, and the Light Rapid Transit (LRT) system consisting
of three regional tram lines spanning 31 additional stations, as
shown in Fig. 1. To serve the commuting demands of the city, the
service frequency of the trains are kept from 2 to 4 min  during
peak hours, and from 4 to 8 min  during off-peak hours. The tapping
gates at the stations are typically located within 50 m of the station
platforms. This distance introduces a walking time component in
the commuter travel duration. Interchange stations which connect
multiple lines contain internal walkways where commuters can
transfer from one platform to another platform directly without
having to first leave the station.

To construct the train network in our model, we consulted pub-
licly available resources, including the LTA website.1 This yields the
set of all train stations, their connectivity, and estimated travel time

1 http://www.publictransport.sg/content/publictransport/en/homepage/
trainmap.html (last accessed January 2014).

between two adjacent stations. Information regarding the first and
last trains at each station are also publicly available, and is used to
estimate the train dispatch schedule.

To estimate the walking times along the stations in order to
account for commuter locomotion, we conducted several physical
tours of the stations. The measurements made are coarse and not
empirically verified; however, they are sufficient since walking is
usually the smallest component of travel – typically less than 2 min.

Our main data source for the commuter travel demand is the
anonymized travel smart card dataset for public transport users
in Singapore, obtained from the Land Transport Agency (LTA) of
Singapore. This amounts to over 14 million train journey records
for 2 million anonymized card IDs taken across a full week. Note
that the population of Singapore is approximately 5.3 million in
this period. Thus, over one-third of the Singapore population ride
the public trains. In our data, a trip begins with a tap in of the smart
card at the origin station, and terminates with a tap out at the des-
tination station. Here, we  use the following fields for each record:
origin (tap-in station), destination (tap-out station),  tap-in time, and
trip duration. From the origin,  destination,  and tap-in time fields, we
can reconstruct the travel demand for any given origin–destination
(O–D) pair and time. The trip duration field is used for validating the
simulation.

3. Computational model

Our approach to modelling the RTS comprises two aspects: (1)
the modelling of the trains as they traverse the rail network, and
(2) the modelling of commuters as they travel from their origins
to their destinations. The first aspect, the modelling of trains, is
straightforward as we  do not fully model the physical mechanisms
of the trains, and it is only sufficient that our simulated train arrivals
can fit the publicly available train schedules (i.e., first-train timings
and train arrival frequencies for each station), and that our train
capacities are estimated correctly. Modelling commuters however,
is non-trivial, as we  seek to capture the totality of the experiences
of every commuter, from the moment they tap in at the origin, to
the moment they tap out at the destination; and our commuter
population is heterogeneous in physical characteristics and deci-
sion preferences. To serve both aspects, we have chosen to model
both the trains and commuters as agents in a time-based simula-
tion spanning a day of service. As time progresses, train agents are
launched on the station platforms and traverse the rail network
according to their simulated schedules. Concurrently, commuter
agents are created at origin stations and board the passing trains
to their destination stations where they will leave the system. The
life-cycles of these two  types of agents are captured in the state
diagrams in Fig. 2.

3.1. Train modelling

The rail network in Singapore – comprising 121 stations, 412
directed edges connecting adjacent stations, and 7 train lines –
can be depicted using a directed graph (V, A), consisting of vertices
representing the stations, V, and arcs connecting adjacent stations
together, A. The cost of each arc represents the time it takes for a
train to travel from one station to an adjacent station. Although con-
nectivity between adjacent stations is symmetric, the travel time is
not; therefore the graph is directed. The set of arcs can be further
categorized into several disjoint sets representing the 7 operational
lines in the rail network. The physical attributes of a train depends
on which line it is on, as some lines utilize smaller capacity trains
than the others (1920 being the typical train capacity).

Since a train will wait at a station while commuters board and
alight it, we  also need to model the individual platforms for each
station. For every train which passes by a station S, it has an arc that
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