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• The structure of LTQ n and some definitions and notations.
• We introduce some properties of LTQ n.
• Investigates the fault-tolerant vertex-pancyclicity of LTQ n.
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a b s t r a c t

The n-dimensional locally twisted cube LTQn is a variant of the hypercube, which possesses some
properties superior to the hypercube. This paper investigates the fault-tolerant vertex-pancyclicity of
LTQn, and shows that if LTQn (n > 3) contains at most n − 3 faulty vertices and/or edges then, for any
fault-free vertex u and any integer ℓwith 4 6 ℓ 6 2n

− fv except for 5, there is a fault-free cycle of length
ℓ containing the vertex u, where fv is the number of faulty vertices. The result is optimal in some senses.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Interconnection networks play an important role in parallel
processing systems. An interconnection network can be repre-
sented by a graph G = (V , E), where V represents the vertex set
and E represents the edge set. The capacity of embedding other
existing network into an interconnection network is a critical is-
sue in evaluating an interconnection network. Suppose that some
process can be naturally decomposed into a collection of subpro-
cesses that can be executed concurrently with certain commu-
nication among subprocesses. One obtains a graph by denoting
each subprocess by a vertex and each communication between
subprocesses by an edge between the corresponding vertices. The
problem of allocating the subprocesses to processors in the given
network can be modeled by the following graph embedding prob-
lem: given a host graph G2 = (V2, E2), which represents the net-
work into which other networks are to be embedded, and a guest
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graph G1 = (V1, E1), which represents the network to be em-
bedded, the problem is to find a mapping from each node of G1
to a node of G2, and a mapping from each edge of G1 to a path
in G2 [27]. One common measure of effectiveness of an embed-
ding is the dilation. The dilation of embedding ψ is defined as
dil(G1,G2, ψ) = max{dist(G2, ψ(u), ψ(v))|(u, v) ∈ E1}, where
dist(G2, ψ(u), ψ(v)) denotes the distance between the two nodes
ψ(u) and ψ(v) in G2. The smaller the dilation of an embedding
is, the shorter the communication delay that the graph G2 simu-
lates the graph G1 [1]. As two common guest graphs, linear arrays
(i.e. paths) [9,8,7] and rings (i.e. cycles) [2,6,15] are two fundamen-
tal networks for parallel and distributed computing.

In large interconnection networks, nodes or edges tend to be-
come faulty. It is important to find an embedding of a guest graph
into a host graph where all faulty nodes and edges have been re-
moved. This is called fault-tolerant embedding. Much work has
been done on the fault-tolerant embedding [3,10,12,19,21,20,17,
4,13].

The locally twisted cube has many properties superior to
hypercube. Though both the locally twisted cube and the ordinary
hypercube have the same number of vertices and the same vertex
degree, the diameter of the locally twisted cube is approximately
half that of the ordinary hypercube.
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In this paper, we are interested in the path and/or cycle
embedding properties of the n-dimensional locally twisted cube
LTQ n. Yang et al. proposed this new network [26] and proved that
LTQ n contains cycles of all lengths from 4 to 2n [27]. Ma, Xu [23]
and Hu et al. [16], independently, improved this result by proving
that for any edge in LTQ n there are cycles of all lengths containing
it. Ma and Xu [22] further improved this result by showing that for
any two different vertices x and y with distance d in LTQ n, there
exist xy-paths of all lengths from d to 2n

− 1 except for d + 1.
Even when faulty elements occur, Chang et al. [5] and Park

et al. [24], independently, showed that LTQ n still contains fault-free
cycles of all lengths provided that faulty elements do not exceed
n − 2.

Very recently, Han et al. [11] have showed that LTQ n with at
most n−3 faulty elements contains paths of all lengths from2n−1

−

1 to 2n
−fv−1between any twodistinct fault-free vertices,where fv

is the number of faulty vertices. Hsieh andWu [14] have considered
more faulty edges and showed that LTQ n contains a fault-free
Hamiltonian cycle provided that faulty edges do not exceed 2n−5
and each vertex is incident with at least two fault-free edges. This
condition is natural since, in practical applications, the probability
is small for a vertex x being isolated (all links incident with x are
faulty) or pendant (only one link incident with x is fault-free and
the others are all faulty).

In this paper, we show that for any vertex u ∈ V (LTQ n) and any
integer 4 6 ℓ 6 2n

− fv except for 5, there exists cycle C of length
ℓ in LTQ n such that u is in C if fe + fv 6 n− 3. The approach we use
is based on the recursive construction of LTQ n.

The remaining part of this paper is organized as follows. In
Section 2, we recall the structure of LTQ n, and some definitions and
notations. In Section 3, we introduce some properties of LTQ n to be
used in our proofs. In Section 4, we give the proof of our result.
Finally, we give some concluding remarks in Section 5.

2. Preliminaries

In this section, we will give some definitions and properties
about LTQ n. A graph G = (V , E) consists of a vertex-set V and
an edge-set E, where V = V (G) is a finite set and E = E(G) is
a subset of xy–xy is an unordered pair of V . Two vertices x and
y are adjacent if xy is an edge of G, and which are also the end-
vertices of xy. For a vertex x, the vertex adjacent to x is called as
the neighbor of x. The degree of a vertex x is the number of edges
incidentwith it. A graph is called k-regular if each vertex has degree
k. For two distinct vertices x and y, an xy-path between x and y is a
sequence of distinct vertices inwhich any two consecutive vertices
are adjacent. The length of a path is the number of edges on the
path. An xy-path of length at least three is called a cycle if x = y.
A connected subgraph of G is called a spanning tree if it contains
all vertices of G and no cycles, in which a distinguished vertex is
called the root of the spanning tree.

The distance between two distinct vertices x and y in G is the
length of a shortest xy-path in G, and the diameter of G is the
maximum distance between any two vertices.

A non-empty subset M of E(G) is called a matching of G if no
two of its elements have a common end vertices in G. A matching
M is perfect if every vertex of G is an end-vertex of some edge inM .

We now recall the definition of the n-dimensional locally
twisted cube, proposed by Yang, Evans andMegson [26], which has
2n vertices, and each vertex is an n-string on {0, 1}.

Definition 1 ([26]). The n-dimensional locally twisted cube, de-
noted by LTQ n (n > 2), is recursively defined as follows.

(1) LTQ 2 is a graph isomorphic to Q2.
(2) For n > 3, LTQ n is built from disjoint copies of LTQ n−1

according to the following steps. Let LTQ 0
n−1 and LTQ 1

n−1 denote
graphs obtained by prefixing labels of each vertex of one copy
of LTQ n−1 with 0 andwith 1, respectively, and connect a vertex
x = 0x2x3 . . . xn of LTQ 0

n−1 with another vertex y = 1(x2 +

xn)x3 . . . xn of LTQ 1
n−1 by an edge xy, where ‘+’ represents the

modulo 2 addition.
The graphs shown in Fig. 1 are LTQ 3 and LTQ 4. The locally

twisted cube LTQ n can be equivalently defined with the following
non-recursive fashion.

Definition 2 ([26]). For n > 2, the n-dimensional locally twisted
cube LTQ n is a graph with n-strings on {0, 1} as the vertex set. Two
vertex x = x1x2 . . . xn−1xn and y = y1y2 . . . yn−1yn of LTQ n are
adjacent if and only if either

(a) xi = ȳi and xi+1 = yi+1 + xn for some 1 6 i 6 n−2, and xj = yj
for all the remaining bits, where ‘+’ represents the modulo 2
addition, or

(b) xi = ȳi for some i ∈ {n−1, n}, and xi = yi for all the remaining
bits.

According to the above definition, it is not difficult to see that
LTQ n is an n-regular graph with 2n vertices and n2n−1 edges. From
the definition, LTQ n can be expressed as the union of two disjoint
copies of LTQ n−1 by adding a perfect matching between them
according to the specified rule. For short, we often write LTQ n =

L ⊕ R, where L ∼= LTQ 0
n−1 and R ∼= LTQ 1

n−1.
We now make some remarks on the n-dimensional locally

twisted cube.
Firstly, like to many variants of the hypercube such as the

twisted cube, the crossed cube, the augmented cube andotherwise,
the locally twisted cube not only keepsmany nice properties of the
hypercube such as regularity, high connectivity and high recursive
constructability, but also has diameter of about half of that of the
hypercube of the same size.

Secondly, the locally twisted cube also keeps a nice property
of the hypercube, that is, the labels of any two adjacent vertices
differ in at most two successive bits. However, a common feature
of the above-mentioned variants is that the labels of someneighbor
vertices may differ in a large number of bits. As a result, a
portion of good properties of hypercube are lost in these variants.
For example, the design of efficient parallel algorithms on these
variants turns out to be a difficult task [26].

Thirdly, the locally twisted cube LTQ n contains cycles of all
lengths from 4 to 2n [27], but the hypercube Qn contains only even
cycles since it is a bipartite graph. Thus, LTQ n is superior to Qn in
cycle embedding property.

Fourthly, the construction of the locally twisted cube LTQ n is
quite different from that of the twisted cube TQn. The former is
defined for any positive integer n, while the latter only for odd
integer.

Lastly, it should be noted that, like to many variants of the
hypercube, the locally twisted cube LTQ n is not vertex-transitive
for n > 4 proved by Liu et al. [18].

3. Properties

In this section, we introduce some properties of LTQ n to be used
in our proofs in Section 4.

Yang, Evans and Megson [26] found an isomorphic expression
of LTQ n. For example, two graphs shown in Fig. 2 are other
expressions of LTQ 3 and LTQ 4, respectively.

In general, they proved the following result.
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