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• Proof of an exchange law between sequential and concurrent composition.
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Quite a number of aspects of concurrency are reflected by the inequational exchange
law (P ∗ Q ) ; (R ∗ S) � (P ; R) ∗ (Q ; S) between sequential composition ; and concurrent
composition ∗. In particular, recent research has shown that, under a certain semantic
definition, validity of this law is equivalent to that of the familiar concurrency rule for
Hoare triples. Unfortunately, while the law holds in the standard model of concurrent
Kleene algebra, its is not true in the relationally based setting of algebraic separation logic.
However, we show that under mild conditions the reverse inequation (P ; R) ∗ (Q ; S) �
(P ∗ Q ) ; (R ∗ S) still holds there. From this reverse exchange law we derive slightly
restricted but still reasonably useful variants of the concurrency rule. Moreover, using a
corresponding definition of locality, we obtain also a variant of the frame rule, where
∗ now is interpreted as separating conjunction. These results allow using the relational
setting also for modular and concurrency reasoning. Finally, we interpret the results further
by discussing several variations of the approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Over the recent years, logical techniques in program semantics have been supplemented by algebraic approaches which
frequently allow more concise and perspicuous reasoning. The present paper extends one particular approach in that area,
viz. Algebraic Separation Logic [2]. That framework was developed to reflect separation logic (SL) [3]. Although SL originally was
developed to facilitate reasoning about shared mutable data structures, it has proved to be also very effective for modular
reasoning about concurrency [4,5]. For this logic there are already several abstract approaches that capture corresponding
calculi, e.g., [6]. A more comprehensive general algebraic structure is provided by Concurrent Kleene Algebra (CKA) [7]. A cen-
tral concept of that algebra is that it allows easy soundness proofs of important rules like the concurrency and frame rules
used in logics for concurrency and modular reasoning.

✩ This paper is a significantly extended and revised version of Dang and Möller (2012) [1].
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The concurrency and frame rules have the form

{P1} Q 1 {R1} {P2} Q 2 {R2}
{P1 ∗ P2} Q 1 ∗ Q 2 {R1 ∗ R2} (conc)

{P } Q {R}
{P ∗ S} Q {R ∗ S} (frame).

Here Q and Q i denote programs while all other letters denote assertions. The essential feature of these rules is the separat-
ing conjunction ∗ which stands for non-interfering concurrency or disjointness of resources. Hence these rules express that
one may reason in a modular way about program parts when the context does not interfere with them.

Interestingly, the recent paper [8] shows that validity of the concurrency rule using the triple interpretation
{P } Q {R} ⇔df P ; Q ⊆ R is equivalent to validity of the exchange law

(P1 ∗ P2) ; (Q 1 ∗ Q 2) � (P1 ; Q 1) ∗ (P2 ; Q 2),

for programs Pi and Q i . Likewise, validity of the frame rule is equivalent to validity of the small exchange law

(P1 ∗ P2) ; Q 1 � (P1 ; Q 1) ∗ P2.

In these laws, semicolon denotes sequential composition, while � denotes a partial ordering expressing refinement. The
exchange laws abstractly characterise the interplay between sequential and concurrent composition. Each of them expresses
that the program on the right-hand side has fewer sequential dependences than the one on the left-hand side.

There are several algebraic models satisfying those laws:

– The standard model is based on sets of traces. This model is defined very abstractly so that it needs to be refined further
to model concurrency with concrete programs adequately enough. However, it enables elegant and simple proofs.

– Another model employs predicate transformers to abstractly capture program behaviour of separation logic. It validates
a certain part of the CKA laws, in particular the exchange law. But it fails to satisfy other important laws needed for
program proofs as, e.g., laws in connection with non-deterministic choice.

More details may be found in [7,8].
The purpose of the present paper is to investigate relationally based Algebraic Separation Logic mentioned above with

respect to exchange laws, extending [1]. As a relational structure it copes well with non-determinacy ; moreover, it allows
the re-use of a large and well studied body of algebraic laws in connection with assertion logic. Surprisingly, although the
model satisfies neither of the mentioned exchange laws, it validates an exchange law with the reversed refinement order.
This entails variants of the concurrency and frame rules with similarly simple soundness proofs as in the original Concurrent
Kleene Algebra approach. Additionally, we establish an equivalence between the concurrency rule and the reverse exchange
law analogous to the one in [8]. This shows that the relational model can be applied in reasoning about programs that
involve true concurrency and modularity. To underpin this further, we also study a number of variations of our main
relational model and discuss their adequacy and usefulness.

2. Basic definitions and properties

We start by repeating some basic definitions from [2] and some direct consequences. Summarised, the central concept
of this paper is a relational structure enriched by an operator that ensures disjointness of program states or executions.
Notationally, we follow [2,8].

Definition 2.1. A separation algebra is a partial commutative monoid (Σ,•, u); the elements of Σ are called states and
denoted by σ ,τ , . . . . The operator • denotes state combination and the empty state u is its unit. A partial commutative
monoid is given by a partial binary operation satisfying the unity, commutativity and associativity laws w.r.t. the equality
that holds for two terms iff both are defined and equal or both are undefined. The induced combinability or disjointness
relation # is defined by

σ0#σ1 ⇔df σ0 • σ1 is defined.

As a concrete example one can instantiate the states to heaps. For this one has Σ = N � N, i.e., the set of partial
functions from naturals to naturals. Moreover • is the union of domain-disjoint heaps and u = ∅, the empty heap. The
corresponding combinability relation is h0#h1 ⇔ dom(h0) ∩ dom(h1) = ∅ for heaps h0,h1. More concrete examples can be
found in [6].

Definition 2.2. We assume a separation algebra (Σ,•, u). A command is a relation P ⊆ Σ × Σ between states. Rela-
tional composition is denoted by ;. The command skip is the identity relation between states. A test is a sub-identity,
i.e., a command P with P ⊆ skip. In the remainder we will denote tests by lower case letters p,q, . . . . A particular test that
characterises the empty state u is provided by emp =df {(u, u)}. Moreover, the domain of a command P , represented as a
test, will be denoted by �P . It is characterised by the universal property

�P ⊆ q ⇔ P ⊆ q ; P .

In particular, P ⊆ �P ; P and hence P = �P ; P .
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