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In this paper we define a new similarity measure: LCSk, aiming at finding the maximal 
number of k length substrings matching in both input strings while preserving their order 
of appearance, for which the traditional LCS is a special case, where k = 1. We examine 
this generalization in both theory and practice. We first describe its basic solution and give 
an experimental evidence in real data for its ability to differentiate between sequences that 
are considered similar according to the LCS measure. We then examine extensions of the 
LCSk definition to LCS in at least k-length substrings (LCS≥k) and 2-dimensional LCSk and 
also define complementary EDk and ED≥k distances.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Longest Common Subsequence problem, whose first famous dynamic programming solution appeared in 1974 [23], 
is one of the classical problems in computer science. The LCS problem is motivated by the need to measure similarity of 
sequences and strings, and it has been very well studied (for a survey, see [8]). The well-known dynamic programming 
solution [13] requires running time of O (n2), for two input strings of length n.

The LCS problem has been investigated on more general structures such as trees and matrices [5], run-length encoded 
strings [6], weighted sequences [4,9] and more. Many variants of the LCS problem were studied as well, among which LCS 
alignment [19,18,17], constrained LCS [22,10], restricted LCS [12] and LCS approximation [16].2

LCS has been also used to measure similarity for biological sequence comparison. Its strength lies in its simplicity which 
has allowed development of an extremely fast, bit-parallel computation which uses the bits in a computer word to represent 
adjacent cells in a row of the LCS scoring matrix and computer logic operations to calculate the scores from one row to the 
next [3,11,14]. For example, in a recent experiment, 25,000,000 bit-parallel LCS computations (sequence length = 63) took 
approximately 7 seconds on a typical desktop computer [7] or about 60 times faster than a standard algorithm. This speed 
makes the LCS attractive for sequence comparison performed on high-sequencing data. The disadvantage of the LCS is that 
it is a crude measure of similarity because consecutive matching letters in the LCS can have different spacings in the two 
sequences, i.e., there is no penalty for insertion and deletion. Indeed, as is well-known, there is a strong relation between 
the total number of insertions and deletions and the LCS. However, there are no limitations on the “distribution” of such 
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A = 1 2 3 4 5 6 7 8
T G C G T G T G

B = G T T G T G C C

Fig. 1. An LCS2 example.

insertions and deletions. Consider for example the sequences: A = (GT G)n/3 and B = (T CC)n/3, for which the LCS is quite 
large – of size n/3, but there are no two matched symbols consecutive in both sequences. Any common subsequence of this 
size “puts together” separated elements implying a rather “artificial” similarity.

A possible direction is to use affine gap penalties [15], i.e., to include penalties for opening new gaps besides penalties 
for individual insertions and deletions that merely extend the gaps. However, gap penalties are not flexible enough to force 
subsequent matches on the one hand (i.e., no gaps at all between matches) while minimizing the total number of gaps on 
the other hand (to maximize similarity). We propose a definition of LCS that is more accurate because it enables forcing 
letters to be adjacent in both sequences. In our problem, the common subsequence is required to consist of k or at least k
length substrings.

The LCSk problem A formal definition appears in Definition 1.

Definition 1. The Longest Common Subsequence in k Length Substrings Problem (LCSk):
Input: Two sequences A = a1a2 . . .an , B = b1b2 . . .bn over alphabet �.
Output: The maximal � s.t. there are � substrings, ai1 . . .ai1+k−1 , . . . , ai� . . .ai�+k−1, identical to b j1 . . .b j1+k−1 , . . . ,

b j� . . .b j�+k−1 where {ai f } and {b j f } are in increasing order for 1 ≤ f ≤ � and where two k length substrings 
in the same sequence, do not overlap.

We demonstrate LCSk using the sequences of Fig. 1. A possible common subsequence for (k = 2) is G T T G obtained 
from a4, a5, a7, a8 and b1, b2, b5, b6. Though a6 = b4, and such a match preserves the order of the common subsequence, it 
cannot be added to the common subsequence in pairs, since it is a match of a single symbol. For k = 3, one of the possible 
solutions is T G C achieved by matching a1, a2, a3, with b5, b6, b7.

The LCSk problem is a generalization of the LCS problem. However, using the LCS algorithm on the input sequences, 
then backtracking the dynamic programming table to mark the symbols participating in the common subsequence and 
checking whether those symbols appear in consecutive k length substrings in both input sequences (deleting them if not), 
indeed guarantees a common subsequence in k length substrings but not necessarily of optimal length. Hence, an algorithm 
designed for LCSk is required. The matchings of k consecutive symbols in the LCSk problem is called a k matching throughout 
this paper.

The LCS at least k problem (LCS≥k) LCSk measures similarity while limiting the fragmentation of the matched subsequence. 
The demand of matching substrings of length exactly k can be relaxed without decreasing the proximity demand by setting 
the length of the matched substrings to be at least k, achieving an even tighter similarity measure since longer common 
subsequence can be reported without refraining from the demand that the matches will be adjacent. Consider, for example, 
the sequences of Fig. 1. For k = 2 there is the solution of the 2 matchings GT and T G . However, the second 2 matching can 
be extended to a 3 matching GT G without overlapping GT , thus, a longer common subsequence consisting of substrings of 
length at least 2 can be obtained.

The length of the common substrings is limited by 2k − 1 since a longer common substring contains two substrings each 
of length k or more. Thus, for substrings longer than 2k − 1 a larger k can be used in the definition of the problem. Since 
in the LCS≥k problem, not all matches are of the same length, it makes more sense to maximize the total length of the 
common substrings of length at least k, rather than maximizing the number of matches.

Definition 2. The Longest Common Subsequence in at least k Length Substrings Problem (LCS≥k):
Input: Two sequences A = a1a2 . . .an , B = b1b2 . . .bn over alphabet �.
Output: The maximal � s.t. there are substrings with total length �, aip . . .aip+k+ f is identical to b jp . . .b jp+k+ f for −1 ≤

f ≤ k − 2 where {aip } and {b jp } are in increasing order and every two substrings in the same sequence, do not 
overlap.

Paper organization The paper is organized as follows. The basic solution for the LCSk problem is given in Section 2. Section 3
describes experiments comparing LCS and LCSk on real data. The relaxed problem of LSC≥k is discussed in Section 4. 
Section 5 refers to the complementary edit distance measures, EDk and ED≥k. In Section 6 we discuss a two-dimensional 
extension of the LSCk. Section 7 concludes the paper.

2. Solving the LCSk problem

We first note that, as other LCS variants, LCSk can be solved using a dynamic programming algorithm. Every table cell 
[i, j] keeps a diagonal counter, named dcount, counting the length of the longest match between the suffixes of A[1 . . . i]
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