Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Fast construction of wavelet trees *

J. Ian Munro^a, Yakov Nekrich^{a,*}, Jeffrey S. Vitter^b

^a Cheriton School of Computer Science, University of Waterloo, Canada

^b Department of Electrical Engineering & Computer Science, University of Kansas, United States

ARTICLE INFO

Article history: Received 31 March 2015 Received in revised form 10 October 2015 Accepted 8 November 2015 Available online 1 December 2015

Keywords: Wavelet trees Compressed data structures Compressed sequences

ABSTRACT

In this paper we describe a fast algorithm that creates a wavelet tree for a sequence of symbols. We show that a wavelet tree can be constructed in $O(n \left\lceil \log \sigma / \sqrt{\log n} \right\rceil)$ time where *n* is the number of symbols and σ is the alphabet size.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Wavelet tree, introduced in [1], is one of the most extensively studied succinct data structures. Wavelet trees are frequently chosen as a space-efficient data structure that supports access, rank and select queries on a sequence of symbols. An access query access(i, X) returns the *i*-th symbol in a sequence *X*; a rank query $rank_a(i, X)$ computes how many times a symbol *a* occurs in the prefix X[1..i] of *X*; select query $select_a(i, X)$ finds the position where *a* occurs for the *i*-th time. Since wavelet trees can efficiently support operations rank and select, they can be used in succinct representations of graphs [2], strings, points and other geometric objects on a grid, full-text indexes [1,3], data structures for document retrieval [4], XML documents [5], and binary relations [6]. It was also shown that wavelet trees and their variants can be used to answer various queries on points and other geometric objects [7]. We refer to recent extensive surveys of Navarro [8] and Makris [9] for a description of these and other applications of wavelet trees. In this paper we describe the first algorithm that constructs a wavelet tree in $o(n \log \sigma)$ time. n^o We show how to construct a wavelet tree in $O(n \lceil \frac{\log \sigma}{\sqrt{\log n}} \rceil)$ time.

Let *X* be a sequence of length *n* over an alphabet of size σ . We can assume w.l.o.g. that the *i*-th element *X*[*i*] of *X* is an integer in the range $[1, \sigma]$. Essentially constructing a wavelet tree for a sequence *X* requires re-grouping the bits of *X* into a bit sequence of total length $n \log \sigma$. Since different bits of an element *X*[*i*] are stored in different parts of the bit sequence, it appears that we need $\Omega(n \log \sigma)$ time to construct a wavelet tree. In this paper we show that the cost of the straightforward solution can be reduced by an $O(\sqrt{\log n})$ factor. The main idea of our method is usage of bit parallelism, i.e. we use bit operations to keep $\Omega(1)$ elements of *X* in one word and perform certain operations on elements packed into one word in constant time. Suppose that we can pack *L* symbols of a sequence *X* into one machine word. Then we can generate the wavelet tree for the resulting sequence of symbols in $O(n(\log \sigma/L))$ time by processing O(L) symbols in constant time.

* Corresponding author.

http://dx.doi.org/10.1016/j.tcs.2015.11.011 0304-3975/© 2015 Elsevier B.V. All rights reserved.

 $^{^{\}star}$ An early version of this work appeared in SPIRE 2014.

E-mail addresses: imunro@uwaterloo.ca (J. Ian Munro), ynekrich@uwaterloo.ca (Y. Nekrich), jsv@ku.edu (J.S. Vitter).

Previous and related work. Since wavelet trees were introduced in 2003 [1], a large number of papers that use this data structure appeared in the literature [3,10–16]. A more extensive list of previous results can be found in surveys of Makris [9] and [8]. In spite of a significant number of previous papers, no results for constructing a wavelet tree in $o(n \log \sigma)$ time were previously described. Algorithms that generate a wavelet tree and use little additional workspace were considered by Claude et al. [17] and Tischler [18].

Chazelle [19] described a linear space $(O(n \log n)$ -bit) geometric data structure that answers certain kinds of twodimensional range searching queries. Data organization in [19] is the same as in wavelet tree. n^o quite similar to the approach of wavelet trees. We remark, however, that the intended usage of the wavelet tree and Chazelle's data structure are different. The data structure of Chazelle [19] supports different kinds of geometric queries and uses $O(n \log n)$ space to store *n* two-dimensional points. On the other hand, the wavelet tree, as described in [1] and later works, uses $n \log \sigma$ bits to store a sequence of size *n* over an alphabet of size σ ; the space usage can also be reduced to nH_0 bits, where H_0 is the zero-order entropy of the original sequence. Some other linear-space geometric data structures [20] also use similar ways of structuring data. By the same argument, we need $O(n \log n)$ time to construct these data structures. Chan and Pătraşcu [21] showed that bit parallelism can be used to obtain linear-space data structures with faster construction time. In [21] they describe data structures that use linear space and can be constructed in $O(n\sqrt{\log n})$ time. Their approach is based on recursively reducing the original problem to several problems of smaller size. When point coordinates are sufficiently small, we can pack *L* points into one machine word and process data associated to *L* points in constant time. Very recently, the problem of constructing a wavelet tree was addressed by Babenko et al. [22]; the result presented in [22] and published after the conference version of this paper, is equivalent to our result.

In this paper we show how bit parallelism can be applied to speed-up the construction of the standard wavelet tree data structure. Our simple two-stage approach improves the construction time of the wavelet tree by $O(\sqrt{\log n})$. After recalling the basic concepts in Section 2, we describe the main algorithm and its variants in Section 3. In Section 4 we show how we can construct secondary data structures stored in the wavelet tree nodes. Finally, in Section 5 we show how our result can be used to speed-up the construction algorithm for a geometric data structure that answers two-dimensional orthogonal range maxima queries.

2. Wavelet tree

Let *X* denote a sequence over alphabet $\Sigma = \{1, ..., \sigma\}$. The standard wavelet tree for *X* is a balanced binary tree with bit sequences stored in each internal node. These bit sequences can be obtained as follows: we start by dividing the alphabet symbols into two subsets Σ_0 and Σ_1 of equal size, $\Sigma_0 = \{1, ..., \sigma/2\}$ and $\Sigma_1 = \{\sigma/2+1, ..., \sigma\}$. Let X_0 and X_2 denote the subsequences of *X* induced by symbols from Σ_0 and Σ_1 respectively. The bit sequence $X(v_R)$ stored in the root v_R of the wavelet tree indicates for each symbol X[i] whether it belongs to X_0 or X_1 : $X(v_R)[i] = 0$ if X[i] is in X_0 and $X(v_R)[i] = 1$ if X[i] is in X_1 . The left child of v_R is the wavelet tree for X_0 and the right child of v_R is the wavelet tree for X_1 .

A symbol from an alphabet Σ can be represented as a bit sequence of length $\lfloor \log \sigma \rfloor$ or $\lceil \log \sigma \rceil$. Bit sequences X(u) in the nodes of the wavelet tree consist of the same bits as the symbols in X, but the bits are ordered in a different way. The sequence $X(v_R)$ contains the first bit from each symbol X[i] in the same order as symbols appear in X. Let v_l and v_r be the left and the right children of v_R . The sequence $X(v_l)$ contains the second bit of every symbol in X_0 . That is, $X(v_l)$ contains the second bit of every symbol X[i], such that the first bit of X[i] is 0. $X(v_r)$ contains the second bit of every X[i] such that the first bit of X[i] is 1, etc.

Some generalizations of the wavelet tree often lead to improved results. We can consider *t*-ary wavelet tree for $t = \log^{\varepsilon} n$ and a small constant $\varepsilon > 0$. In this case the original alphabet Σ is divided into *t* parts $\Sigma_0, \ldots, \Sigma_{t-1}$. The sequence $X(v_R)$ in the root node is a sequence over an alphabet $\{0, \ldots, t-1\}$ such that $X(v_R)[i] = j$ iff X[i] is a symbol from Σ_j for $1 \le j \le t$. Let X_j be the subsequence of *X* induced by symbols from Σ_j . The *j*-th child v_j of v_R is the root of the wavelet tree for X_j . The advantage of the *t*-ary wavelet tree is that the tree height is reduced from $O(\log \sigma)$ to $O(\log \sigma / \log \log n)$. Another useful improvement is to modify the shape of the tree so that the average leaf depth is (almost) minimized. Finally we can also keep the binary or *t*-ary sequences X(u), stored in the nodes, in compressed form. Two latter improvements enable us to store a sequence *X* in asymptotically optimal space.

3. Constructing a wavelet tree

In this section we describe our algorithm for constructing a wavelet tree. Our method uses bit parallelism in a way that is similar to [21]. However a recursive algorithm employed in [21] to reduce the problem size is not necessary. Our algorithm consists of two stages. During the first stage we construct an *L*-ary wavelet tree \mathcal{T}^g for $L = 2\sqrt{\log n}$. That is, each internal node $u \in \mathcal{T}^g$ has *L* children. To avoid tedious details, we assume that *L* is an integer that divides σ . An *L*-ary wavelet tree can be defined in the same way as in Section 2. We partition the alphabet $\Sigma = \{1, \ldots, \sigma\}$ into *L* parts $\Sigma_1, \Sigma_2, \ldots, \Sigma_L$. Each Σ_i for $1 \le i \le L - 1$ contains σ/L alphabet symbols; the last part Σ_L contains at most σ/L symbols. The root node u_R of \mathcal{T}^g contains a sequence $X^g(u_R)$. Every element of $X^g(u_R)$ is a positive integer that does not exceed *L*. $X^g(u_R)[i] = j$ if X[i] is a symbol from Σ_j . The child u_i of u is the root node of the wavelet tree for the subsequence X_i , where X_i is the subsequence of X induced by symbols from Σ_i . An *L*-ary tree can be constructed in $O(\log \sigma/L)$ time. During the second stage, we transform an *L*-ary tree into a binary tree. We replace each internal node u of \mathcal{T}^g with a subtree T(u) of height Download English Version:

https://daneshyari.com/en/article/433738

Download Persian Version:

https://daneshyari.com/article/433738

Daneshyari.com