Fast construction of wavelet trees ${ }^{\text {st }}$

J. Ian Munro ${ }^{\text {a }}$, Yakov Nekrich ${ }^{\text {a,* }}$, Jeffrey S. Vitter ${ }^{\text {b }}$
${ }^{\text {a }}$ Cheriton School of Computer Science, University of Waterloo, Canada
${ }^{\mathrm{b}}$ Department of Electrical Engineering \mathcal{E} Computer Science, University of Kansas, United States

A R T I C L E I N F O

Article history:

Received 31 March 2015
Received in revised form 10 October 2015
Accepted 8 November 2015
Available online 1 December 2015

Keywords:

Wavelet trees
Compressed data structures
Compressed sequences

Abstract

In this paper we describe a fast algorithm that creates a wavelet tree for a sequence of symbols. We show that a wavelet tree can be constructed in $O(n\lceil\log \sigma / \sqrt{\log n}\rceil)$ time where n is the number of symbols and σ is the alphabet size.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Wavelet tree, introduced in [1], is one of the most extensively studied succinct data structures. Wavelet trees are frequently chosen as a space-efficient data structure that supports access, rank and select queries on a sequence of symbols. An access query access (i, X) returns the i-th symbol in a sequence X; a rank query rank ${ }_{a}(i, X)$ computes how many times a symbol a occurs in the prefix $X[1 . . i]$ of X; select query $\operatorname{select}_{a}(i, X)$ finds the position where a occurs for the i-th time. Since wavelet trees can efficiently support operations rank and select, they can be used in succinct representations of graphs [2], strings, points and other geometric objects on a grid, full-text indexes [1,3], data structures for document retrieval [4], XML documents [5], and binary relations [6]. It was also shown that wavelet trees and their variants can be used to answer various queries on points and other geometric objects [7]. We refer to recent extensive surveys of Navarro [8] and Makris [9] for a description of these and other applications of wavelet trees. In this paper we describe the first algorithm that constructs a wavelet tree in $o(n \log \sigma)$ time. n^{0} We show how to construct a wavelet tree in $O\left(n\left\lceil\frac{\log \sigma}{\sqrt{\log n}}\right\rceil\right)$ time.

Let X be a sequence of length n over an alphabet of size σ. We can assume w.l.o.g. that the i-th element $X[i]$ of X is an integer in the range $[1, \sigma]$. Essentially constructing a wavelet tree for a sequence X requires re-grouping the bits of X into a bit sequence of total length $n \log \sigma$. Since different bits of an element $X[i]$ are stored in different parts of the bit sequence, it appears that we need $\Omega(n \log \sigma)$ time to construct a wavelet tree. In this paper we show that the cost of the straightforward solution can be reduced by an $O(\sqrt{\log n})$ factor. The main idea of our method is usage of bit parallelism, i.e. we use bit operations to keep $\Omega(1)$ elements of X in one word and perform certain operations on elements packed into one word in constant time. Suppose that we can pack L symbols of a sequence X into one machine word. Then we can generate the wavelet tree for the resulting sequence of symbols in $O(n(\log \sigma / L))$ time by processing $O(L)$ symbols in constant time.

[^0]Previous and related work. Since wavelet trees were introduced in 2003 [1], a large number of papers that use this data structure appeared in the literature [3,10-16]. A more extensive list of previous results can be found in surveys of Makris [9] and [8]. In spite of a significant number of previous papers, no results for constructing a wavelet tree in $o(n \log \sigma)$ time were previously described. Algorithms that generate a wavelet tree and use little additional workspace were considered by Claude et al. [17] and Tischler [18].

Chazelle [19] described a linear space $(O(n \log n)$-bit) geometric data structure that answers certain kinds of twodimensional range searching queries. Data organization in [19] is the same as in wavelet tree. n^{0} quite similar to the approach of wavelet trees. We remark, however, that the intended usage of the wavelet tree and Chazelle's data structure are different. The data structure of Chazelle [19] supports different kinds of geometric queries and uses $O(n \log n)$ space to store n two-dimensional points. On the other hand, the wavelet tree, as described in [1] and later works, uses $n \log \sigma$ bits to store a sequence of size n over an alphabet of size σ; the space usage can also be reduced to $n H_{0}$ bits, where H_{0} is the zero-order entropy of the original sequence. Some other linear-space geometric data structures [20] also use similar ways of structuring data. By the same argument, we need $O(n \log n)$ time to construct these data structures. Chan and Pǎtraşcu [21] showed that bit parallelism can be used to obtain linear-space data structures with faster construction time. In [21] they describe data structures that use linear space and can be constructed in $O(n \sqrt{\log n})$ time. Their approach is based on recursively reducing the original problem to several problems of smaller size. When point coordinates are sufficiently small, we can pack L points into one machine word and process data associated to L points in constant time. Very recently, the problem of constructing a wavelet tree was addressed by Babenko et al. [22]; the result presented in [22] and published after the conference version of this paper, is equivalent to our result.

In this paper we show how bit parallelism can be applied to speed-up the construction of the standard wavelet tree data structure. Our simple two-stage approach improves the construction time of the wavelet tree by $O(\sqrt{\log n})$. After recalling the basic concepts in Section 2, we describe the main algorithm and its variants in Section 3. In Section 4 we show how we can construct secondary data structures stored in the wavelet tree nodes. Finally, in Section 5 we show how our result can be used to speed-up the construction algorithm for a geometric data structure that answers two-dimensional orthogonal range maxima queries.

2. Wavelet tree

Let X denote a sequence over alphabet $\Sigma=\{1, \ldots, \sigma\}$. The standard wavelet tree for X is a balanced binary tree with bit sequences stored in each internal node. These bit sequences can be obtained as follows: we start by dividing the alphabet symbols into two subsets Σ_{0} and Σ_{1} of equal size, $\Sigma_{0}=\{1, \ldots, \sigma / 2\}$ and $\Sigma_{1}=\{\sigma / 2+1, \ldots, \sigma\}$. Let X_{0} and X_{2} denote the subsequences of X induced by symbols from Σ_{0} and Σ_{1} respectively. The bit sequence $X\left(v_{R}\right)$ stored in the root v_{R} of the wavelet tree indicates for each symbol $X[i]$ whether it belongs to X_{0} or $X_{1}: X\left(v_{R}\right)[i]=0$ if $X[i]$ is in X_{0} and $X\left(v_{R}\right)[i]=1$ if $X[i]$ is in X_{1}. The left child of v_{R} is the wavelet tree for X_{0} and the right child of v_{R} is the wavelet tree for X_{1}.

A symbol from an alphabet Σ can be represented as a bit sequence of length $\lfloor\log \sigma\rfloor$ or $\lceil\log \sigma\rceil$. Bit sequences $X(u)$ in the nodes of the wavelet tree consist of the same bits as the symbols in X, but the bits are ordered in a different way. The sequence $X\left(v_{R}\right)$ contains the first bit from each symbol $X[i]$ in the same order as symbols appear in X. Let v_{l} and v_{r} be the left and the right children of v_{R}. The sequence $X\left(v_{l}\right)$ contains the second bit of every symbol in X_{0}. That is, $X\left(v_{l}\right)$ contains the second bit of every symbol $X[i]$, such that the first bit of $X[i]$ is $0 . X\left(v_{r}\right)$ contains the second bit of every $X[i]$ such that the first bit of $X[i]$ is 1 , etc.

Some generalizations of the wavelet tree often lead to improved results. We can consider t-ary wavelet tree for $t=\log ^{\varepsilon} n$ and a small constant $\varepsilon>0$. In this case the original alphabet Σ is divided into t parts $\Sigma_{0}, \ldots, \Sigma_{t-1}$. The sequence $X\left(v_{R}\right)$ in the root node is a sequence over an alphabet $\{0, \ldots, t-1\}$ such that $X\left(v_{R}\right)[i]=j$ iff $X[i]$ is a symbol from Σ_{j} for $1 \leq j \leq t$. Let X_{j} be the subsequence of X induced by symbols from Σ_{j}. The j-th child v_{j} of v_{R} is the root of the wavelet tree for X_{j}. The advantage of the t-ary wavelet tree is that the tree height is reduced from $O(\log \sigma)$ to $O(\log \sigma / \log \log n)$. Another useful improvement is to modify the shape of the tree so that the average leaf depth is (almost) minimized. Finally we can also keep the binary or t-ary sequences $X(u)$, stored in the nodes, in compressed form. Two latter improvements enable us to store a sequence X in asymptotically optimal space.

3. Constructing a wavelet tree

In this section we describe our algorithm for constructing a wavelet tree. Our method uses bit parallelism in a way that is similar to [21]. However a recursive algorithm employed in [21] to reduce the problem size is not necessary. Our algorithm consists of two stages. During the first stage we construct an L-ary wavelet tree \mathcal{T}^{g} for $L=2^{\sqrt{\log n}}$. That is, each internal node $u \in \mathcal{T}^{g}$ has L children. To avoid tedious details, we assume that L is an integer that divides σ. An L-ary wavelet tree can be defined in the same way as in Section 2 . We partition the alphabet $\Sigma=\{1, \ldots, \sigma\}$ into L parts $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{L}$. Each Σ_{i} for $1 \leq i \leq L-1$ contains σ / L alphabet symbols; the last part Σ_{L} contains at most σ / L symbols. The root node u_{R} of \mathcal{T}^{g} contains a sequence $X^{g}\left(u_{R}\right)$. Every element of $X^{g}\left(u_{R}\right)$ is a positive integer that does not exceed $L . X^{g}\left(u_{R}\right)[i]=j$ if $X[i]$ is a symbol from Σ_{j}. The child u_{i} of u is the root node of the wavelet tree for the subsequence X_{i}, where X_{i} is the subsequence of X induced by symbols from Σ_{i}. An L-ary tree can be constructed in $O(\log \sigma / L)$ time. During the second stage, we transform an L-ary tree into a binary tree. We replace each internal node u of \mathcal{T}^{g} with a subtree $T(u)$ of height

https://daneshyari.com/en/article/433738

Download Persian Version:

https://daneshyari.com/article/433738

Daneshyari.com

[^0]: An early version of this work appeared in SPIRE 2014.

 * Corresponding author.

 E-mail addresses: imunro@uwaterloo.ca (J. Ian Munro), ynekrich@uwaterloo.ca (Y. Nekrich), jsv@ku.edu (J.S. Vitter).

