
Theoretical Computer Science 638 (2016) 91–97

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Fast construction of wavelet trees ✩

J. Ian Munro a, Yakov Nekrich a,∗, Jeffrey S. Vitter b

a Cheriton School of Computer Science, University of Waterloo, Canada
b Department of Electrical Engineering & Computer Science, University of Kansas, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2015
Received in revised form 10 October 2015
Accepted 8 November 2015
Available online 1 December 2015

Keywords:
Wavelet trees
Compressed data structures
Compressed sequences

In this paper we describe a fast algorithm that creates a wavelet tree for a sequence of 
symbols. We show that a wavelet tree can be constructed in O (n 

⌈
logσ/

√
log n

⌉
) time 

where n is the number of symbols and σ is the alphabet size.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Wavelet tree, introduced in [1], is one of the most extensively studied succinct data structures. Wavelet trees are fre-
quently chosen as a space-efficient data structure that supports access, rank and select queries on a sequence of symbols. 
An access query access(i, X) returns the i-th symbol in a sequence X ; a rank query ranka(i, X) computes how many times a 
symbol a occurs in the prefix X[1..i] of X ; select query selecta(i, X) finds the position where a occurs for the i-th time. Since 
wavelet trees can efficiently support operations rank and select, they can be used in succinct representations of graphs [2], 
strings, points and other geometric objects on a grid, full-text indexes [1,3], data structures for document retrieval [4], XML 
documents [5], and binary relations [6]. It was also shown that wavelet trees and their variants can be used to answer vari-
ous queries on points and other geometric objects [7]. We refer to recent extensive surveys of Navarro [8] and Makris [9] for 
a description of these and other applications of wavelet trees. In this paper we describe the first algorithm that constructs 
a wavelet tree in o(n logσ) time. no We show how to construct a wavelet tree in O (n� log σ√

log n
�) time.

Let X be a sequence of length n over an alphabet of size σ . We can assume w.l.o.g. that the i-th element X[i] of X is 
an integer in the range [1, σ ]. Essentially constructing a wavelet tree for a sequence X requires re-grouping the bits of X
into a bit sequence of total length n logσ . Since different bits of an element X[i] are stored in different parts of the bit 
sequence, it appears that we need �(n log σ) time to construct a wavelet tree. In this paper we show that the cost of the 
straightforward solution can be reduced by an O (

√
log n) factor. The main idea of our method is usage of bit parallelism, i.e. 

we use bit operations to keep �(1) elements of X in one word and perform certain operations on elements packed into one 
word in constant time. Suppose that we can pack L symbols of a sequence X into one machine word. Then we can generate 
the wavelet tree for the resulting sequence of symbols in O (n(logσ/L)) time by processing O (L) symbols in constant time.

✩ An early version of this work appeared in SPIRE 2014.

* Corresponding author.
E-mail addresses: imunro@uwaterloo.ca (J. Ian Munro), ynekrich@uwaterloo.ca (Y. Nekrich), jsv@ku.edu (J.S. Vitter).

http://dx.doi.org/10.1016/j.tcs.2015.11.011
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.11.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:imunro@uwaterloo.ca
mailto:ynekrich@uwaterloo.ca
mailto:jsv@ku.edu
http://dx.doi.org/10.1016/j.tcs.2015.11.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.11.011&domain=pdf


92 J. Ian Munro et al. / Theoretical Computer Science 638 (2016) 91–97

Previous and related work. Since wavelet trees were introduced in 2003 [1], a large number of papers that use this data 
structure appeared in the literature [3,10–16]. A more extensive list of previous results can be found in surveys of Makris [9]
and [8]. In spite of a significant number of previous papers, no results for constructing a wavelet tree in o(n log σ) time were 
previously described. Algorithms that generate a wavelet tree and use little additional workspace were considered by Claude 
et al. [17] and Tischler [18].

Chazelle [19] described a linear space (O (n log n)-bit) geometric data structure that answers certain kinds of two-
dimensional range searching queries. Data organization in [19] is the same as in wavelet tree. no quite similar to the 
approach of wavelet trees. We remark, however, that the intended usage of the wavelet tree and Chazelle’s data structure 
are different. The data structure of Chazelle [19] supports different kinds of geometric queries and uses O (n log n) space to 
store n two-dimensional points. On the other hand, the wavelet tree, as described in [1] and later works, uses n log σ bits 
to store a sequence of size n over an alphabet of size σ ; the space usage can also be reduced to nH0 bits, where H0 is the 
zero-order entropy of the original sequence. Some other linear-space geometric data structures [20] also use similar ways of 
structuring data. By the same argument, we need O (n log n) time to construct these data structures. Chan and Pǎtraşcu [21]
showed that bit parallelism can be used to obtain linear-space data structures with faster construction time. In [21] they 
describe data structures that use linear space and can be constructed in O (n

√
log n) time. Their approach is based on re-

cursively reducing the original problem to several problems of smaller size. When point coordinates are sufficiently small, 
we can pack L points into one machine word and process data associated to L points in constant time. Very recently, the 
problem of constructing a wavelet tree was addressed by Babenko et al. [22]; the result presented in [22] and published 
after the conference version of this paper, is equivalent to our result.

In this paper we show how bit parallelism can be applied to speed-up the construction of the standard wavelet tree data 
structure. Our simple two-stage approach improves the construction time of the wavelet tree by O (

√
log n). After recalling 

the basic concepts in Section 2, we describe the main algorithm and its variants in Section 3. In Section 4 we show how we 
can construct secondary data structures stored in the wavelet tree nodes. Finally, in Section 5 we show how our result can 
be used to speed-up the construction algorithm for a geometric data structure that answers two-dimensional orthogonal 
range maxima queries.

2. Wavelet tree

Let X denote a sequence over alphabet � = { 1, . . . , σ }. The standard wavelet tree for X is a balanced binary tree with bit 
sequences stored in each internal node. These bit sequences can be obtained as follows: we start by dividing the alphabet 
symbols into two subsets �0 and �1 of equal size, �0 = { 1, . . . , σ/2 } and �1 = { σ/2 +1, . . . , σ }. Let X0 and X2 denote the 
subsequences of X induced by symbols from �0 and �1 respectively. The bit sequence X(v R) stored in the root v R of the 
wavelet tree indicates for each symbol X[i] whether it belongs to X0 or X1: X(v R)[i] = 0 if X[i] is in X0 and X(v R)[i] = 1
if X[i] is in X1. The left child of v R is the wavelet tree for X0 and the right child of v R is the wavelet tree for X1.

A symbol from an alphabet � can be represented as a bit sequence of length �log σ � or � logσ �. Bit sequences X(u) in 
the nodes of the wavelet tree consist of the same bits as the symbols in X , but the bits are ordered in a different way. The 
sequence X(v R) contains the first bit from each symbol X[i] in the same order as symbols appear in X . Let vl and vr be the 
left and the right children of v R . The sequence X(vl) contains the second bit of every symbol in X0. That is, X(vl) contains 
the second bit of every symbol X[i], such that the first bit of X[i] is 0. X(vr) contains the second bit of every X[i] such 
that the first bit of X[i] is 1, etc.

Some generalizations of the wavelet tree often lead to improved results. We can consider t-ary wavelet tree for t = logε n
and a small constant ε > 0. In this case the original alphabet � is divided into t parts �0, . . ., �t−1. The sequence X(v R)

in the root node is a sequence over an alphabet { 0, . . . , t − 1 } such that X(v R)[i] = j iff X[i] is a symbol from � j for 
1 ≤ j ≤ t . Let X j be the subsequence of X induced by symbols from � j . The j-th child v j of v R is the root of the wavelet 
tree for X j . The advantage of the t-ary wavelet tree is that the tree height is reduced from O (logσ) to O (logσ/ log log n). 
Another useful improvement is to modify the shape of the tree so that the average leaf depth is (almost) minimized. Finally 
we can also keep the binary or t-ary sequences X(u), stored in the nodes, in compressed form. Two latter improvements 
enable us to store a sequence X in asymptotically optimal space.

3. Constructing a wavelet tree

In this section we describe our algorithm for constructing a wavelet tree. Our method uses bit parallelism in a way that is 
similar to [21]. However a recursive algorithm employed in [21] to reduce the problem size is not necessary. Our algorithm 
consists of two stages. During the first stage we construct an L-ary wavelet tree T g for L = 2

√
log n . That is, each internal 

node u ∈ T g has L children. To avoid tedious details, we assume that L is an integer that divides σ . An L-ary wavelet tree 
can be defined in the same way as in Section 2. We partition the alphabet � = { 1, . . . , σ } into L parts �1, �2, . . ., �L . 
Each �i for 1 ≤ i ≤ L − 1 contains σ/L alphabet symbols; the last part �L contains at most σ/L symbols. The root node uR
of T g contains a sequence X g(uR). Every element of X g(uR) is a positive integer that does not exceed L. X g(uR)[i] = j if 
X[i] is a symbol from � j . The child ui of u is the root node of the wavelet tree for the subsequence Xi , where Xi is the 
subsequence of X induced by symbols from �i . An L-ary tree can be constructed in O (logσ/L) time. During the second 
stage, we transform an L-ary tree into a binary tree. We replace each internal node u of T g with a subtree T (u) of height 



Download English Version:

https://daneshyari.com/en/article/433738

Download Persian Version:

https://daneshyari.com/article/433738

Daneshyari.com

https://daneshyari.com/en/article/433738
https://daneshyari.com/article/433738
https://daneshyari.com

