Theoretical Computer Science 638 (2016) 91-97

Contents lists available at ScienceDirect & o

Theoretical Computer Science

www.elsevier.com/locate/tcs e

Fast construction of wavelet trees @CwssMark

J. Ian Munro?, Yakov Nekrich®*, Jeffrey S. Vitter "

4 Cheriton School of Computer Science, University of Waterloo, Canada
b pepartment of Electrical Engineering & Computer Science, University of Kansas, United States

ARTICLE INFO ABSTRACT

Article history: In this paper we describe a fast algorithm that creates a wavelet tree for a sequence of
Received 31 March 2015 . .
Received in revised form 10 October 2015 symbols. We show that a wavelet tree can be constructed in O (n (logd/,/logn—‘) time
Accepted 8 November 2015 where n is the number of symbols and o is the alphabet size.

Available online 1 December 2015 © 2015 Elsevier B.V. All rights reserved.

Keywords:

Wavelet trees

Compressed data structures
Compressed sequences

1. Introduction

Wavelet tree, introduced in [1], is one of the most extensively studied succinct data structures. Wavelet trees are fre-
quently chosen as a space-efficient data structure that supports access, rank and select queries on a sequence of symbols.
An access query access(i, X) returns the i-th symbol in a sequence X; a rank query rankg(i, X) computes how many times a
symbol a occurs in the prefix X[1..i] of X; select query select, (i, X) finds the position where a occurs for the i-th time. Since
wavelet trees can efficiently support operations rank and select, they can be used in succinct representations of graphs [2],
strings, points and other geometric objects on a grid, full-text indexes [1,3], data structures for document retrieval [4], XML
documents [5], and binary relations [6]. It was also shown that wavelet trees and their variants can be used to answer vari-
ous queries on points and other geometric objects [7]. We refer to recent extensive surveys of Navarro [8] and Makris [9] for
a description of these and other applications of wavelet trees. In this paper we describe the first algorithm that constructs
a wavelet tree in o(nlogo) time. n® We show how to construct a wavelet tree in O (n[loga 1) time.

J/logn

Let X be a sequence of length n over an alphabet of size 0. We can assume w.l.o.g. that the i-th element X[i] of X is
an integer in the range [1, o]. Essentially constructing a wavelet tree for a sequence X requires re-grouping the bits of X
into a bit sequence of total length nlogo. Since different bits of an element X[i] are stored in different parts of the bit
sequence, it appears that we need Q(nlogo) time to construct a wavelet tree. In this paper we show that the cost of the
straightforward solution can be reduced by an O (y/logn) factor. The main idea of our method is usage of bit parallelism, i.e.
we use bit operations to keep €2(1) elements of X in one word and perform certain operations on elements packed into one
word in constant time. Suppose that we can pack L symbols of a sequence X into one machine word. Then we can generate
the wavelet tree for the resulting sequence of symbols in O (n(logo /L)) time by processing O (L) symbols in constant time.

* An early version of this work appeared in SPIRE 2014.
* Corresponding author.
E-mail addresses: imunro@uwaterloo.ca (J. lan Munro), ynekrich@uwaterloo.ca (Y. Nekrich), jsv@ku.edu (J.S. Vitter).

http://dx.doi.org/10.1016/j.tcs.2015.11.011
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.11.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:imunro@uwaterloo.ca
mailto:ynekrich@uwaterloo.ca
mailto:jsv@ku.edu
http://dx.doi.org/10.1016/j.tcs.2015.11.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.11.011&domain=pdf

92 J. lan Munro et al. / Theoretical Computer Science 638 (2016) 91-97

Previous and related work. Since wavelet trees were introduced in 2003 [1], a large number of papers that use this data
structure appeared in the literature [3,10-16]. A more extensive list of previous results can be found in surveys of Makris [9]
and [8]. In spite of a significant number of previous papers, no results for constructing a wavelet tree in o(nlogo) time were
previously described. Algorithms that generate a wavelet tree and use little additional workspace were considered by Claude
et al. [17] and Tischler [18].

Chazelle [19] described a linear space (O (nlogn)-bit) geometric data structure that answers certain kinds of two-
dimensional range searching queries. Data organization in [19] is the same as in wavelet tree. n° quite similar to the
approach of wavelet trees. We remark, however, that the intended usage of the wavelet tree and Chazelle’s data structure
are different. The data structure of Chazelle [19] supports different kinds of geometric queries and uses O (nlogn) space to
store n two-dimensional points. On the other hand, the wavelet tree, as described in [1] and later works, uses nlogo bits
to store a sequence of size n over an alphabet of size o ; the space usage can also be reduced to nHg bits, where Hg is the
zero-order entropy of the original sequence. Some other linear-space geometric data structures [20] also use similar ways of
structuring data. By the same argument, we need O (nlogn) time to construct these data structures. Chan and Pdtrascu [21]
showed that bit parallelism can be used to obtain linear-space data structures with faster construction time. In [21] they
describe data structures that use linear space and can be constructed in O (n./logn) time. Their approach is based on re-
cursively reducing the original problem to several problems of smaller size. When point coordinates are sufficiently small,
we can pack L points into one machine word and process data associated to L points in constant time. Very recently, the
problem of constructing a wavelet tree was addressed by Babenko et al. [22]; the result presented in [22] and published
after the conference version of this paper, is equivalent to our result.

In this paper we show how bit parallelism can be applied to speed-up the construction of the standard wavelet tree data
structure. Our simple two-stage approach improves the construction time of the wavelet tree by O (y/logn). After recalling
the basic concepts in Section 2, we describe the main algorithm and its variants in Section 3. In Section 4 we show how we
can construct secondary data structures stored in the wavelet tree nodes. Finally, in Section 5 we show how our result can
be used to speed-up the construction algorithm for a geometric data structure that answers two-dimensional orthogonal
range maxima queries.

2. Wavelet tree

Let X denote a sequence over alphabet X = {1, ..., 0 }. The standard wavelet tree for X is a balanced binary tree with bit
sequences stored in each internal node. These bit sequences can be obtained as follows: we start by dividing the alphabet
symbols into two subsets Xy and X1 of equal size, o ={1,...,0/2}and 1 ={0/2+1,...,0}. Let Xo and X, denote the
subsequences of X induced by symbols from ¥y and X respectively. The bit sequence X(vg) stored in the root vy of the
wavelet tree indicates for each symbol X[i] whether it belongs to Xo or Xi: X(vg)[i] =0 if X[i] is in Xp and X(vg)[i]=1
if X[i] is in Xj. The left child of vy is the wavelet tree for Xy and the right child of vy is the wavelet tree for Xj.

A symbol from an alphabet X can be represented as a bit sequence of length [logo | or [logo . Bit sequences X(u) in
the nodes of the wavelet tree consist of the same bits as the symbols in X, but the bits are ordered in a different way. The
sequence X(vg) contains the first bit from each symbol X[i] in the same order as symbols appear in X. Let v; and v, be the
left and the right children of vg. The sequence X(v;) contains the second bit of every symbol in Xp. That is, X(v;) contains
the second bit of every symbol X[i], such that the first bit of X[i] is 0. X(v,) contains the second bit of every X[i] such
that the first bit of X[i] is 1, etc.

Some generalizations of the wavelet tree often lead to improved results. We can consider t-ary wavelet tree for t =log®n
and a small constant & > 0. In this case the original alphabet X is divided into t parts X, ..., X;—1. The sequence X(vg)
in the root node is a sequence over an alphabet {0,...,t — 1} such that X(vg)[i] = j iff X[i] is a symbol from X; for
1< j<t. Let X; be the subsequence of X induced by symbols from X;. The j-th child v; of vy is the root of the wavelet
tree for X;. The advantage of the t-ary wavelet tree is that the tree height is reduced from O (logo) to O(logo/loglogn).
Another useful improvement is to modify the shape of the tree so that the average leaf depth is (almost) minimized. Finally
we can also keep the binary or t-ary sequences X(u), stored in the nodes, in compressed form. Two latter improvements
enable us to store a sequence X in asymptotically optimal space.

3. Constructing a wavelet tree

In this section we describe our algorithm for constructing a wavelet tree. Our method uses bit parallelism in a way that is
similar to [21]. However a recursive algorithm employed in [21] to reduce the problem size is not necessary. Our algorithm

consists of two stages. During the first stage we construct an L-ary wavelet tree 78 for L = 2Vlogn That is, each internal
node u € 7¢ has L children. To avoid tedious details, we assume that L is an integer that divides o. An L-ary wavelet tree
can be defined in the same way as in Section 2. We partition the alphabet ¥ ={1,...,0} into L parts Xq, X, ..., 2.
Each X; for 1 <i <L —1 contains o /L alphabet symbols; the last part ¥; contains at most o /L symbols. The root node ug
of 78 contains a sequence X&(ug). Every element of X&(ug) is a positive integer that does not exceed L. X8 (ug)[i] = j if
X[i] is a symbol from X;. The child u; of u is the root node of the wavelet tree for the subsequence X;, where X; is the
subsequence of X induced by symbols from X;. An L-ary tree can be constructed in O(logo /L) time. During the second
stage, we transform an L-ary tree into a binary tree. We replace each internal node u of 7 with a subtree T(u) of height

Download English Version:

https://daneshyari.com/en/article/433738

Download Persian Version:

https://daneshyari.com/article/433738

Daneshyari.com

https://daneshyari.com/en/article/433738
https://daneshyari.com/article/433738
https://daneshyari.com

