
Science of Computer Programming 121 (2016) 176–189

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Knowledge representation and information extraction for 

analysing architectural patterns

Perla Velasco-Elizondo a,∗, Rosario Marín-Piña b, Sodel Vazquez-Reyes a, 
Arturo Mora-Soto b, Jezreel Mejia b

a Autonomous University of Zacatecas, Zacatecas, ZAC., 98160, Mexico
b Centre for Mathematical Research, Zacatecas, ZAC., 98060, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 April 2015
Received in revised form 16 December 2015
Accepted 30 December 2015
Available online 21 January 2016

Keywords:
Architectural design
Architectural patterns
Quality attribute
Ontology
Information extraction

Today, many software architecture design methods consider the use of architectural 
patterns as a fundamental design concept. When making an effective pattern selection, 
software architects must consider, among other aspects, its impact on promoting or 
inhibiting quality attributes. However, for inexperienced architects, this task often requires 
significant time and effort. Some reasons of the former include: the number of existing 
patterns, the emergence of new patterns, the heterogeneity in the natural language 
descriptions used to define them and the lack of tools for automatic pattern analysis. In 
this paper we describe an approach, based on knowledge representation and information 
extraction, for analysing architectural pattern descriptions with respect to specific quality 
attributes. The approach is automated by computable model that works as a prototype 
tool. We focus on the performance quality attribute and, by performing experiments on 
a corpus of patterns with forty-five architects of varying levels of experience, demonstrate 
that the proposed approach increases recall and reduces analysis time compared to manual 
analysis.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When the architecture of a software system is designed, one key task is the selection of design concepts in order to 
satisfy a set of architectural drivers [1]. Architectural drivers are requirements that shape a software system and consist 
of high-level functional requirements, constraints, and quality attribute requirements [2]. Many software architecture design 
methods consider patterns as a fundamental design concept, e.g., Rozanski and Woods’ [3], ADD [1], Microsoft’s Technique 
for Architecture and Design [4]. The ones of our interest are architectural patterns, which denote a reusable named solution 
applicable to a commonly occurring problem in software architecture design. There are a number of architectural pattern 
catalogues that software architects have been using for years, e.g., Pattern-Oriented Software Architecture [5] and Patterns 
of Enterprise Application Architecture [6].

When making an effective pattern selection, software architects must consider, among other aspects, its impact on pro-
moting or inhibiting quality attributes. However, for inexperienced architects, this task requires significant effort and can be 
time consuming for reasons including:

* Corresponding author.
E-mail address: pvelasco@uaz.edu.mx (P. Velasco-Elizondo).

http://dx.doi.org/10.1016/j.scico.2015.12.007
0167-6423/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.12.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:pvelasco@uaz.edu.mx
http://dx.doi.org/10.1016/j.scico.2015.12.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.12.007&domain=pdf


P. Velasco-Elizondo et al. / Science of Computer Programming 121 (2016) 176–189 177

(i) The number of existing patterns. Nowadays there are plenty of architectural patterns’ catalogues, e.g., Pattern-Oriented 
Software Architecture [5], Patterns of Enterprise Application Architecture [6], Service Oriented Architecture (SOA) Design 
Patterns [7], Service Design Patterns [8], Big Data Application Architecture [9]. Most of these catalogues describe more 
than fifty patterns; each pattern description is about two pages. Some reading time estimations state that reading and 
understanding one page of text takes from two to six minutes depending on the reader’s experience on the subject 
[10]. Based on an average of four minutes per page, if a two-page pattern takes a total of eight minutes to read and 
understand, one hundred pattern descriptions would require approximately thirteen hours.

(ii) The emergence of new patterns. Since architectural patterns are fundamental design concepts, every time a new software 
development paradigm appears, new patterns related to it also arise. For example, the popularization of SOA promoted 
the definition of architectural patterns as the ones in SOA Design Patterns [7] and Service Design Patterns [8] catalogues. 
Similarly, cloud and big data software systems have contributed to the emergence of architectural patterns to tackle 
specific architectural drivers in these contexts, e.g., MapReduce Design Patterns [11], Big Data Application Architecture 
[9], Cloud Design Patterns [12]. Thus, the number of pattern descriptions an architect must read and consider at any 
given time is always increasing, adding to the time and effort required to evaluate them.

(iii) The heterogeneity of pattern descriptions. Although most patterns are defined in terms of a common set of elements, e.g., 
name, intent, context, participants, the description of these elements is written in natural language without standard-
ization. For example, in describing quality attributes, a variety of concepts could be used to describe whether a pattern 
promotes or inhibits performance quality, including ‘concurrency’, ‘overhead’, ‘speed’, ‘latency’ or ‘capacity’. This lack of 
standardized terminology could have an impact on how the elements are understood and evaluated by inexperienced 
architects [13].

(iv) The lack of tools for automatic pattern analysis. There are some tools that an architect could use to automatically identify 
the most suitable patterns for a software architecture design. However, the lack of a standard mechanism for indexing 
pattern catalogues as well as more efficient search engines makes these tools limited [13]. As it will be explained in 
Section 2, in most of the tools pattern selection is made from a pre-defined pattern repository. Most of the time, this 
repository is static and cannot be extended to include new patterns. When it is possible, the analysis and classification 
of new patterns are performed manually, becoming a time consuming task.

In this work we describe an approach, based on knowledge representation and information extraction, to automate the 
analysis of architectural pattern descriptions and help inexperienced software architects with determining whether specific 
quality attributes are promoted or inhibited. Knowledge representation methods provide a basis on which to design and 
implement mechanisms for representing information in computers so that programs can use this information to solve 
problems in areas that normally require human expertise [14]. On the other hand information extraction allows extraction 
from text documents salient facts about pre-specified types, entities or relationships [15,16]. The approach is automated 
by computable model that works as a prototype tool. In this paper we focus on the performance quality attribute and, by 
performing experiments on a corpus of patterns with forty-five architects of varying levels of experience, demonstrate that 
the proposed approach increases recall and reduces analysis time compared to manual analysis.

This paper is organised as follows: in Section 2 we describe relevant related work; in Section 3, we describe the proposed 
approach to analysing architectural pattern descriptions and in Section 4 we discuss and evaluate this approach. Finally, in 
Section 5, we state the conclusions and describe some lines of future work.

2. Related work

There have been several attempts to provide tools and frameworks to assist architects during architectural design. In this 
section we relate our work to other literature in this context.

DesignBots [17] is a planning-based design framework that assigns architectural knowledge to agents that compete in 
different quality attributes. The framework requires the architect to provide an initial architecture supporting functional 
requirements and a weighted set of related quality attributes scenarios [18]. Thus, using a pre-defined set of design con-
cepts as well as information provided by the architect, a set of design alternatives to improve the initial architecture are 
automatically generated from the cooperative work of the agents.

Jabali et al. [19] propose a method, and the corresponding tool support, for choosing a suitable software architecture 
design that satisfies multiple required quality attributes [19]. The method requires a set of weighted quality attribute re-
quirements and a set of high-level functional requirements. Using a pre-defined set of design concepts, the method applies 
data-driven decision making to generate a proposal for the required design.

Hadaytullah et al. [20] present a tool for producing potential architecture proposals using genetic algorithms. The tool 
requires a basic functional decomposition of the system, a set of high-level functional requirements and the specification of 
the quality requirements. As in previous approaches, the method uses a pre-defined set of design concepts for producing 
potential architecture proposals.

Charmy [21] is a framework whose goal is to apply model-checking techniques to discover potential inconsistencies of 
an architectural design and allow architects to fix them by applying suggested design decisions. The specification of an 
architectural design is given in terms of components, connectors, their internal functional behaviour and relations. When an 
adequate design is reached, Java code conforming it can be automatically generated through suitable transformations.



Download English Version:

https://daneshyari.com/en/article/433951

Download Persian Version:

https://daneshyari.com/article/433951

Daneshyari.com

https://daneshyari.com/en/article/433951
https://daneshyari.com/article/433951
https://daneshyari.com

