
Science of Computer Programming 113 (2015) 119–148

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

An algorithm for compositional nonblocking verification using 

special events

Colin Pilbrow, Robi Malik ∗

Department of Computer Science, University of Waikato, Hamilton, New Zealand

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 April 2014
Received in revised form 12 May 2015
Accepted 14 May 2015
Available online 4 June 2015

Keywords:
Discrete event systems
Finite-state machines
Model checking
Compositional verification
Nonblocking

This paper proposes to improve compositional nonblocking verification of discrete event 
systems through the use of special events. Compositional verification involves abstraction to 
simplify parts of a system during verification. Normally, this abstraction is based on the set 
of events not used in the remainder of the system, i.e., in the part of the system not being 
simplified. Here, it is proposed to exploit more knowledge about the remainder of the 
system and check how events are being used. Always enabled events, selfloop-only events, 
failing events, and blocked events are easy to detect and often help with simplification even 
though they are used in the remainder of the system. Abstraction rules from previous work 
are generalised, and experimental results demonstrate the applicability of the resulting 
algorithm to verify several industrial-scale discrete event system models, while achieving 
better state-space reduction than before.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The nonblocking property is a weak liveness property commonly used in supervisory control theory of discrete event systems 
to express the absence of livelocks and deadlocks [1,2]. This is a crucial property of safety-critical control systems, and 
with the increasing size and complexity of these systems, there is an increasing need to verify the nonblocking property 
automatically. The standard method to check whether a system is nonblocking involves the explicit composition of all the 
automata involved, and is limited by the well-known state-space explosion problem. Symbolic model checking has been used 
successfully to reduce the amount of memory required by representing the state space symbolically rather than enumerating 
it explicitly [3].

Compositional verification [4–6] is an effective alternative that can be used independently of or in combination with sym-
bolic methods. Compositional verification exploits the fact that large systems are typically modelled by several components 
interacting in synchronous composition. Then compositional minimisation or abstraction [6] can be used to simplify individual 
components before computing their synchronous composition, gradually reducing the state space of the system and allowing 
much larger systems to be verified in the end. The ways how components can be simplified to ensure correct verification 
results depend on the property being verified [7].

The nonblocking property considered in this paper is logically different from most properties commonly studied for com-
positional verification, and requires very specific abstraction methods [8]. A suitable theory is laid out in previous work [9], 
where it is argued that abstractions used in nonblocking verification should preserve a process-algebraic equivalence called 
conflict equivalence. Various abstraction rules preserving conflict equivalence have been proposed and used for compositional 

* Corresponding author.
E-mail addresses: cgp5@students.waikato.ac.nz (C. Pilbrow), robi@waikato.ac.nz (R. Malik).

http://dx.doi.org/10.1016/j.scico.2015.05.010
0167-6423/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2015.05.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:cgp5@students.waikato.ac.nz
mailto:robi@waikato.ac.nz
http://dx.doi.org/10.1016/j.scico.2015.05.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2015.05.010&domain=pdf


120 C. Pilbrow, R. Malik / Science of Computer Programming 113 (2015) 119–148

nonblocking verification. First, observer projection [10] and weak observation equivalence [11] have been used to simplify au-
tomata. The journal paper [8] introduces conflict equivalence to compositional nonblocking verification and proposes a set 
of conflict-preserving abstraction rules. The same technique has also been applied to compositional verification of the gen-
eralised nonblocking property [12], giving rise to an improved set of abstraction rules. It has also been proposed to replace 
abstraction rules by more general simplification processes using annotated automata [13] or canonical automata [14].

All the above methods are based on conflict equivalence, and make no assumptions about the automata not being 
simplified. If a part of a system is replaced by a conflict-equivalent abstraction, the nonblocking property is guaranteed 
to be preserved independently of the other system components [9]. While this is easy to understand and implement, more 
simplification is possible by considering the other system components. To improve the degree of simplification, it has been 
proposed to take more information about the remainder of the system into account and to consider that certain events are 
always enabled or selfloop-only in the remainder of the system [15].

This paper is an extended version of the workshop paper [15]. It contains more detailed results about always enabled 
and selfloop-only events including formal proofs of correctness, plus the additional special event types of failing and blocked
events. It also includes a description of the algorithm for compositional nonblocking verification with special events, at a 
level of detail not published before, and more elaborate experimental results.

In the following, Section 2 introduces the background of nondeterministic automata, the nonblocking property, conflict 
equivalence, and compositional nonblocking verification. Section 3 introduces four types of special events and their key 
properties for use in compositional nonblocking verification, and Section 4 presents simplification rules that exploit these 
special events. Then Section 5 describes the compositional nonblocking verification algorithm, and Section 6 presents the 
experimental results. Finally, Section 7 adds some concluding remarks.

2. Preliminaries

2.1. Events and languages

Event sequences and languages are a simple means to describe discrete system behaviours [1,2]. Their basic building 
blocks are events, which are taken from a finite alphabet A. In addition, two special events are used, the silent event τ
and the termination event ω. These are never included in an alphabet A unless mentioned explicitly using notation such as 
Aτ = A ∪ {τ }, Aω = A ∪ {ω}, and Aτ ,ω = A ∪ {τ , ω}.

A∗ denotes the set of all finite traces of the form σ1σ2 · · ·σn of events from A, including the empty trace ε, while 
A+ = A∗ \ {ε} does not include the empty trace. The concatenation of two traces s, t ∈ A∗ is written as st . A subset L ⊆ A∗ is 
called a language. The natural projection P : A∗

τ ,ω → A∗
ω is the operation that deletes all silent (τ ) events from traces.

2.2. Nondeterministic automata

System behaviours are modelled using finite automata. Typically, system models are deterministic, but abstraction may 
result in nondeterminism.

Definition 1. A (nondeterministic) finite automaton is a tuple G = 〈A, Q , →, Q ◦〉 where A is a finite set of events, Q is a 
finite set of states, → ⊆ Q × Aτ ,ω × Q is the state transition relation, and Q ◦ ⊆ Q is the set of initial states.

The transition relation is written in infix notation x σ−→ y, and is extended to traces s ∈ A∗
τ ,ω in the standard way. For 

state sets X, Y ⊆ Q , the notation X s−→ Y means x s−→ y for some x ∈ X and y ∈ Y , and X s−→ y means x s−→ y for some 
x ∈ X . Also, X s−→ for a state or state set X denotes the existence of a state y ∈ Q such that X s−→ y, and G s−→ x means 
Q ◦ s−→ x.

The termination event ω /∈ A denotes completion of a task and does not appear anywhere else but to mark such comple-
tions. It is required that states reached by ω do not have any outgoing transitions, i.e., if x ω−→ y then there does not exist 
σ ∈ Aτ ,ω such that y σ−→. This ensures that the termination event, if it occurs, is always the final event of any trace. The 
traditional set of accepting states is Q ω = {x ∈ Q | x ω−→} in this notation. For graphical simplicity, states in Q ω are shown 
shaded in the figures of this paper instead of explicitly showing ω-transitions.

To support silent events, another transition relation ⇒ ⊆ Q × A∗
ω × Q is introduced, where x s�⇒ y denotes the existence 

of a trace t ∈ A∗
τ ,ω such that P (t) = s and x t−→ y. That is, x s−→ y denotes a path with exactly the events in s, while x s�⇒ y

denotes a path with an arbitrary number of τ events shuffled with the events of s. Notations such as X
s�⇒ Y and x s�⇒ are 

defined analogously to →.

Definition 2. Let G = 〈AG , Q G , →G , Q ◦
G〉 and H = 〈AH , Q H , →H , Q ◦

H 〉 be two automata. The synchronous composition of G
and H is

G ‖ H = 〈AG ∪ AH , Q G × Q H ,→, Q ◦
G × Q ◦

H 〉 , (1)

where



Download English Version:

https://daneshyari.com/en/article/434010

Download Persian Version:

https://daneshyari.com/article/434010

Daneshyari.com

https://daneshyari.com/en/article/434010
https://daneshyari.com/article/434010
https://daneshyari.com

