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h i g h l i g h t s

• We deal with model- and mutation-based test case generation.
• The main focus lies on optimisations of the underlying conformance check.
• We explain the construction of test cases based on the conformance check.
• We allow for non-determinism in the test models.
• We demonstrate the effectiveness of our optimisations on industrial case studies.
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In model-based mutation testing, a test model is mutated for test case generation. The 
resulting test cases are able to detect whether the faults in the mutated models have 
been implemented in the system under test. For this purpose, a conformance check 
between the original and the mutated model is required. The generated counterexamples 
serve as basis for the test cases. Unfortunately, conformance checking is a hard problem 
and requires sophisticated verification techniques. Previous attempts using an explicit 
conformance checker suffered state space explosion. In this paper, we present several 
optimisations of a symbolic conformance checker using constraint solving techniques. The 
tool efficiently checks the refinement between non-deterministic test models. Compared to 
previous implementations, we could reduce our runtimes by 97%. In a new industrial case 
study, our optimisations can reduce the runtime from over 6 hours to less than 3 minutes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mutation testing is a fault-based software testing technique that receives growing interest [1]. Yet, it is still perceived 
as being costly and impractical. This remains a barrier to wider uptake within industry. In this paper, we report how 
these costs can be reduced for a particularly hard problem in mutation testing: the generation of test cases from mutated, 
non-deterministic models.

Mutation testing is a technique for assessing and improving a test suite [2,3]. A number of faulty versions of a program 
under test are produced by injecting bugs into its source code. These faulty programs are called mutants. A tester analyses 
if a given test suite can kill all mutants. We say that a test kills a mutant if it is able to distinguish the mutant from the 
original. The tester improves his test suite until all faulty mutants get killed.
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Fig. 1. Model-based mutation testing.

Unfortunately, the method is not that straightforward, because not all mutants are faulty, i.e., not all injected faults cause 
observable failures. For example, injected faults in dead code have no effect. Such mutants cannot be killed as they are 
behaviourally equivalent to the original and are therefore called equivalent mutants. These mutants need to be singled out 
by other means than testing. Traditionally, this has been done by manual inspection. However, as we demonstrate in this 
paper, modern program verification techniques can efficiently deal with equivalent mutants.

We focus on model-based mutation testing. It combines ideas from mutation testing and model-based testing. Model-based 
testing (sometimes also specification-based testing) is a black-box testing technique that avoids the labour of manually 
writing hundreds of test cases. Instead the expected behaviour of the system under test (SUT) is captured in a model. 
The test cases are automatically generated from this model [4]. Such models that serve as input for automatic test case 
generation are called test models. The test model is more abstract than the SUT itself and should focus on the aspects of the 
SUT to be tested. The technique is receiving growing interest in the embedded-systems domain, where models are the rule 
rather than the exception [5].

In model-based mutation testing, we view the SUT as a black box. Hence, we have no access to the source code and 
consequently, cannot mutate it. Therefore, we mutate a model of the SUT. This original model is assumed to be correct 
with respect to some properties derived from the requirements. This can be assured, e.g., via model checking. Then, given 
the original model and a set of mutated models, we automatically generate test cases that kill the model mutants. The 
generated test cases are abstract and need to be mapped to the concrete interface level of the SUT. The process is shown in 
Fig. 1. Note that the aim is not to test models, but to generate test cases that cover certain faults. These faults are modelled 
by mutating the test models. The mutation is fully automated via mutation operators, i.e., syntactic rules for injecting faults.

Equivalent mutants are singled out automatically. Hence, in contrast to program mutation, where we analyse a given set 
of test cases, here we generate a test suite that will kill all (non-equivalent) mutants. This is non-trivial, since it involves an 
equivalence check between original and mutated models. Since equivalence is undecidable in general, we restrict ourselves 
to bounded domains. How such an efficient checker can be implemented with a constraint solver is the topic and main 
contribution of this paper.

The situation is even more interesting when we consider non-deterministic models. In a non-deterministic model, a 
given (sequence of) input stimuli may cause several possible output observations. Non-determinism may be required due to 
non-deterministic behaviour of the SUT or because of abstraction, which characterises good test models. When comparing 
two non-deterministic models, an original and a mutant, equivalence is insufficient. A (pre-)order relation is needed. Refine-
ment is such an order relation [6]. In this paper, we show how a refinement checker can effectively analyse a large number 
of mutated models.

Compared to our previous work [7,8], we have reduced the test case generation time by 97%. In a further case study, 
we demonstrate that our optimisations reduce the test case generation time from more than 6 hours to 2.2 minutes. The 
specific contributions of this work are the optimisation techniques, their implementation via a constraint solver, and the 
detailed experimental results. This article is an extension of a previous conference paper on optimisations for refinement 
checking [9]. It also includes optimisation techniques recently published [10]. The main novel items are the construction of 
actual test cases and a new larger industrial case study that evaluates all of our optimisations.

The rest of this paper is organised as follows: Section 2 introduces preliminaries, i.e., our modelling language and our 
notion of refinement. Section 3 explains the principles of refinement checking and Section 4 focuses on our techniques for 
increasing its efficiency. In Section 5, test case construction is explained, i.e., how the results obtained from the refinement 
check can be transformed into useful test cases. Section 6 presents our experimental results with a car alarm system and 
a particle counter, which is an industrial use case. We present related work in Section 7 and in Section 8, we draw our 
conclusions.

2. Preliminaries

2.1. Action systems

Our chosen modelling formalism are action systems [11], which are well-suited to model reactive and concurrent sys-
tems [12]. They have a formal semantics with refinement laws and are compositional [13]. Many extensions exist, but the 
main idea is that a system state is updated by guarded actions that may be enabled or not. If no action is enabled, the ac-
tion system terminates. If several actions are enabled, one is chosen non-deterministically. Hence, concurrency is modelled 
in an interleaving semantics.
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