
Science of Computer Programming 94 (2014) 93–108

Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Test generation for sequential nets of Abstract State Machines
with information passing

Paolo Arcaini, Angelo Gargantini ∗

Dipartimento di Ingegneria, Università degli Studi di Bergamo, viale Marconi 5, 24044 Dalmine (BG), Italy

h i g h l i g h t s

• We propose a test generation approach for distributed systems with information passing.
• The generation is performed only considering the single subsystems.
• The tests for the single subsystems are combined to obtain system valid traces.
• The policy used to combine the tests influences the completeness of the approach.
• The approach, compared to techniques considering the whole system, is very efficient.

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 February 2013
Received in revised form 11 October 2013
Accepted 5 February 2014
Available online 17 February 2014

Keywords:
Test case generation
State explosion problem
Information passing
Abstraction
State machines

Model-based test generation consists in deriving system traces from specifications of
systems under test. There exist several techniques for test generation, which, however,
may suffer from scalability problems. In this paper, we assume that the system under
test can be divided in several subsystems such that only one subsystem is active at the
time. Moreover, each subsystem decides when and to which other subsystem to pass the
control, by also initializing the initial state of the next subsystem in a desired way. We
model these systems and we show how it is possible to generate tests in a very efficient
way that exploits the division of the entire system in subsystems. Test generation for the
whole system is performed by visiting each subsystem and generating tests for it. The tests
are combined in order to obtain valid system traces. We show how several visiting policies
influence the completeness of the test generation process.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Model-based automatic test generation consists in automatically generating tests from (abstract) models of systems under
test. In this way, models and specifications are reused for software testing without the need for testers to write test suites
by hand. The advantage of using models instead of code, is mainly the possibility to use specifications as test oracles and
that specifications provide an abstract view of the system without all the implementation details. Although model-based test
generation techniques have been successfully employed [1–3] even for complex systems, the scalability of these approaches
is still a challenge.

We have worked on test generation from Abstract State Machines (ASMs) and used a tool for test generation for several
years. However, since the test generation algorithm is based on model checking [4], one of the main obstacles has been
the scalability of the approach and soon we encountered the well known state space explosion problem. Indeed, the problem

* Corresponding author.
E-mail address: angelo.gargantini@unibg.it (A. Gargantini).

http://dx.doi.org/10.1016/j.scico.2014.02.007
0167-6423/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.scico.2014.02.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:angelo.gargantini@unibg.it
http://dx.doi.org/10.1016/j.scico.2014.02.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2014.02.007&domain=pdf


94 P. Arcaini, A. Gargantini / Science of Computer Programming 94 (2014) 93–108

of the model checking method is that the computational complexity increases exponentially together with the size of the
model. Several techniques exist to overcome this limitation, like symbolic representation of states, compact storing of states,
and efficient state space exploration. However, these techniques may still fail or weaken the coverage of the state space.

On the other hand, the system under test may have some peculiarities that can be exploited to limit the state explosion.
We focus on systems that are composed of several subsystems that pass the control to each other such that only one
subsystem is active at any time. This topology can be exploited for generating the test sequences over the single subsystems
and combining them later, instead of generating the tests over the entire system. So, since the state space exponentially
grows with the size of the system, decomposing the system exponentially reduces the complexity of the problem.

In this paper, we extend the approach in [5] by allowing information passing among the machines: the active machine
decides the next machine and also its initial state by setting some location values as in classical value-passing of program-
ming languages. This situation often occurs when modeling complex systems. For instance, the reader can think of a robotic
system in which multiple small robots work in the same environment and pass to each other a job to be completed. The
same scenario is common also in programming: a program is divided in multiple subprograms, but at every time only one
subprogram is active and every subprogram calls another subprogram by passing some information.

Such systems can be modeled in an abstract way as sequential nets of ASMs, defined in Section 3, that are sets of ASMs
having some features including that only one ASM is active at every time.

The test generation for the entire system modeled by a whole unique specification may be infeasible, but the topology
of the system can be exploited by the test generation algorithm. In this paper, we present a technique in Section 4, that
builds tests for single submodels and combines them in order to obtain valid system traces. Differently from [5], the test
generation and test combination are performed at the same time, in order to visit the ASM only starting from valid initial
states. We present several policies in which the activities of test generation and combination can be performed together.
The basic strategy implements a classical depth first search, while the retrying method performs some extra visits in order
to improve the testing coverage. Moreover, we present a backward search which is able to build tests by backward visiting
the net and possibly improving the coverage.

The paper is organized as follows. Section 2 presents the ASM formalism and the use of model checkers for test gener-
ation. In Section 3 we formalize the concept of sequential nets of ASMs. Section 4 reports the three strategies we propose
for generating test suites for sequential nets. Section 5 presents the relations existing between the three strategies. Sec-
tion 6 describes the experiments conducted on three versions of the running case study that we use throughout the paper.
Section 7 discusses the limitations of the presented approach. Section 8 relates our work with similar contributions, and
Section 9 concludes the paper.

2. Background

2.1. Abstract State Machines

Abstract State Machines (ASMs) [6] are an extension of FSMs, where unstructured control states are replaced by states
with arbitrary complex data. The states of an ASM are multi-sorted first-order structures, i.e., domains of objects with
functions and predicates defined on them. Static functions never change during any run of the machine. Dynamic functions
are distinguished between monitored (only read by the machine and modified by the environment), and controlled (read and
written by the machine).

ASM states are modified by transition relations specified by “rules” describing the modification of the functions interpre-
tation from one state to the next one. There is a limited but powerful set of rule constructors including guarded actions
(if-then) and simultaneous parallel actions (par). The constructor choose expresses nondeterminism in a compact way.
A rule can be declared with a name (macro rule) and called in another rule simply by its name.

A computation of an ASM is a finite or infinite sequence s0, s1, . . . , sn, . . . of states of the machine, where s0 is an initial
state and each si+1 is obtained from si by executing the machine (unique) main rule. An ASM can have more than one initial
state. Because of the nondeterminism of the choose rule and of the environment moves, an ASM can have several different
runs starting in the same initial state.

An ASM state si is represented by a set of couples (location, value). ASM locations, namely pairs (function-name, list-of-
parameter-values), represent the abstract ASM concept of basic object containers (memory units). Location updates represent
the basic units of state change and they are given as assignments, each of the form loc := v , where loc is a location and v
its new value.

2.2. Test generation for ASMs

In model based testing [2,1], the specification describing the expected behavior of the system is used as a test oracle
to assess the correctness of the implementation. Tests are derived from specifications and used generally in conformance
testing. In the following we give some basic definitions about test generation from ASMs.



Download English Version:

https://daneshyari.com/en/article/435042

Download Persian Version:

https://daneshyari.com/article/435042

Daneshyari.com

https://daneshyari.com/en/article/435042
https://daneshyari.com/article/435042
https://daneshyari.com

